Glial-cytokine-neuronal interactions in the mechanisms of persistent pain

持续性疼痛机制中的胶质细胞因子神经元相互作用

基本信息

  • 批准号:
    8247023
  • 负责人:
  • 金额:
    $ 32.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-05-01 至 2014-02-28
  • 项目状态:
    已结题

项目摘要

There has been increasing awareness of neuroimmune interactions and their role in the etiology of diseases including stroke, Parkinson's disease, and chronic pain. Although it is now widely appreciated that glia and inflammatory cytokines affect neuronal function and behavior through a variety of cellular signaling pathways, the underlying mechanisms linking immune and neuronal functions are unknown. We propose to employ a rat model of hind paw inflammatory pain to study interactions between glia, cytokines and neurons and explore their significance in the central nervous system response to injury and the development of persistent pain. Recent studies indicate that pain processing can be vigorously facilitated by brainstem descending circuitry, a process that contributes to the development of chronic pain conditions. Abnormal pains after injury are linked to an enhanced neuronal activity in the rostral ventromedial medulla (RVM), a pivotal structure in descending pain modulation. The emerging literature strongly implicates a role for glia and inflammatory cytokines in the development of hyperalgesia. Through still unknown mechanisms, glia can be activated after injury and release chemical mediators that modulate neuronal activity. Such glial-cytokine-neuronal interactions may be critical in the chronic pain process. To date, no studies have addressed the involvement of glia and related chemicals in descending facilitation of persistent pain. We propose to identify the cellular and molecular mechanisms of descending pain facilitation after tissue injury with an emphasis on neuronal-glial interactions in the RVM circuitry. We hypothesize that 1) peripheral inflammation induces neuronal plasticity in the RVM circuitry involving activation of glia; and 2) RVM glial activation and inflammatory cytokine release facilitate neuronal plasticity through interactions with neuronal N-methyl-D-aspartate receptors (NMDAR) and contribute to the descending facilitation of hyperalgesia. Aim 1 will test the hypothesis that glial cells are activated in the RVM after inflammation and affect neuronal function through release of inflammatory cytokines. Complete Freund's adjuvant will be injected into the hind paw to produce inflammation and behavioral hyperalgesia. Aim 2 will determine whether neuron-to-glia signaling plays a role in glial activation after inflammation. Aim 3 will test the hypothesis that glial activation in the RVM and associated cytokine release facilitate neuronal plasticity through interaction with neuronal NMDAR and play a critical role in the development of hyperalgesia. Thus, we have proposed a model of reciprocal neuronal-glial interactions in the development of persistent pain. Advancing from previous studies, the model emphasizes activation of glia by injury-generated neuronal input, concomitant cytokine release, and post-translational regulation of NMDAR through cytokine signaling. The outcome of these studies will enhance our understanding of functional linkage between the immune and nervous system and help to identify novel targets and agents for management of chronic pain. We propose to employ a rat model of inflammatory pain to study interactions between glia, cytokines and neurons and explore their significance in the central nervous system response to injury and the development of persistent pain conditions. Although it is now widely appreciated that glia and inflammatory cytokines affect neuronal function and behavior through a variety of cellular signaling pathways, the underlying mechanisms linking immune and neuronal functions are largely unknown. The outcome of these studies will enhance our understanding of functional linkage between the immune and nervous system and help to identify novel targets and agents for management of chronic pain.
人们越来越认识到神经免疫相互作用及其在疾病病因学中的作用 包括中风、帕金森病和慢性疼痛。尽管现在人们普遍认识到神经胶质细胞和 炎症细胞因子通过多种细胞信号传导途径影响神经元功能和行为, 连接免疫和神经元功能的潜在机制尚不清楚。我们建议雇用一只老鼠 后爪炎性疼痛模型,用于研究神经胶质细胞、细胞因子和神经元之间的相互作用并探索 它们在中枢神经系统对损伤的反应和持续性疼痛的发展中具有重要意义。 最近的研究表明,脑干下行回路可以大力促进疼痛处理, 导致慢性疼痛病症发展的过程。受伤后出现异常疼痛是 与延髓头侧腹内侧 (RVM) 的神经元活动增强有关,RVM 是大脑中的关键结构 下行疼痛调节。新兴文献强烈暗示神经胶质细胞和炎症的作用 痛觉过敏发展中的细胞因子。通过仍然未知的机制,神经胶质细胞可以在 损伤并释放调节神经元活动的化学介质。这种神经胶质细胞因子神经元 相互作用在慢性疼痛过程中可能至关重要。迄今为止,还没有研究探讨过参与 神经胶质细胞和相关化学物质对持续性疼痛的下降促进作用。我们建议识别细胞和 组织损伤后疼痛减轻的分子机制,重点是神经胶质细胞 RVM 电路中的交互。我们假设 1)外周炎症会诱导神经元可塑性 涉及神经胶质细胞激活的 RVM 电路; 2) RVM 胶质细胞激活和炎症细胞因子释放 通过与神经元 N-甲基-D-天冬氨酸受体 (NMDAR) 相互作用促进神经元可塑性 有助于痛觉过敏的下降促进。 目标 1 将检验以下假设:炎症后神经胶质细胞在 RVM 中被激活并影响神经元 通过释放炎症细胞因子发挥作用。将弗氏完全佐剂注射到后肢 爪子产生炎症和行为痛觉过敏。目标 2 将确定神经元到神经胶质细胞是否 信号传导在炎症后的神经胶质细胞激活中发挥作用。目标 3 将检验神经胶质细胞激活的假设 RVM 和相关细胞因子释放通过与神经元相互作用促进神经元可塑性 NMDAR 在痛觉过敏的发生中发挥着关键作用。 因此,我们提出了一个在持久性发展过程中神经元-胶质细胞相互作用的模型。 疼痛。与之前的研究相比,该模型强调损伤产生的神经元对神经胶质细胞的激活 NMDAR 通过细胞因子信号传导进行输入、伴随细胞因子释放和翻译后调节。 这些研究的结果将增强我们对免疫和免疫系统之间功能联系的理解。 神经系统并有助于确定治疗慢性疼痛的新靶点和药物。我们建议采用大鼠炎症疼痛模型来研究神经胶质细胞、细胞因子和神经元之间的相互作用。 神经元并探讨它们在中枢神经系统对损伤的反应和发展中的重要性 持续疼痛的情况。尽管现在人们广泛认识到神经胶质细胞和炎症细胞因子会影响 通过多种细胞信号通路的神经元功能和行为,其潜在机制 免疫和神经功能之间的联系在很大程度上是未知的。这些研究的结果将增强我们的 了解免疫系统和神经系统之间的功能联系并有助于识别新靶点 以及治疗慢性疼痛的药物。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Epigenetic regulation of persistent pain.
Activity-triggered tetrapartite neuron-glial interactions following peripheral injury.
  • DOI:
    10.1016/j.coph.2015.09.006
  • 发表时间:
    2016-02
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Ren K;Dubner R
  • 通讯作者:
    Dubner R
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KE REN其他文献

KE REN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KE REN', 18)}}的其他基金

Disruption of Homeostatic Neuroimmune Interactions in Descending Circuitry in the Development of Pain Chronicity
慢性疼痛发展过程中下行回路稳态神经免疫相互作用的破坏
  • 批准号:
    10045996
  • 财政年份:
    2020
  • 资助金额:
    $ 32.16万
  • 项目类别:
Disruption of Homeostatic Neuroimmune Interactions in Descending Circuitry in the Development of Pain Chronicity
慢性疼痛发展过程中下行回路稳态神经免疫相互作用的破坏
  • 批准号:
    10440400
  • 财政年份:
    2020
  • 资助金额:
    $ 32.16万
  • 项目类别:
Disruption of Homeostatic Neuroimmune Interactions in Descending Circuitry in the Development of Pain Chronicity
慢性疼痛发展过程中下行回路稳态神经免疫相互作用的破坏
  • 批准号:
    10649713
  • 财政年份:
    2020
  • 资助金额:
    $ 32.16万
  • 项目类别:
Disruption of Homeostatic Neuroimmune Interactions in Descending Circuitry in the Development of Pain Chronicity
慢性疼痛发展过程中下行回路稳态神经免疫相互作用的破坏
  • 批准号:
    10190898
  • 财政年份:
    2020
  • 资助金额:
    $ 32.16万
  • 项目类别:
Immune activation of the endogenous control of persistent pain
持续性疼痛内源性控制的免疫激活
  • 批准号:
    9930850
  • 财政年份:
    2019
  • 资助金额:
    $ 32.16万
  • 项目类别:
Glial-cytokine-neuronal interactions in the mechanisms of persistent pain
持续性疼痛机制中的胶质细胞因子神经元相互作用
  • 批准号:
    7618658
  • 财政年份:
    2008
  • 资助金额:
    $ 32.16万
  • 项目类别:
Glial-cytokine-neuronal interactions in the mechanisms of persistent pain
持续性疼痛机制中的胶质细胞因子神经元相互作用
  • 批准号:
    7778308
  • 财政年份:
    2008
  • 资助金额:
    $ 32.16万
  • 项目类别:
Glial-cytokine-neuronal interactions in the mechanisms of persistent pain
持续性疼痛机制中的胶质细胞因子神经元相互作用
  • 批准号:
    8037678
  • 财政年份:
    2008
  • 资助金额:
    $ 32.16万
  • 项目类别:
Glial-cytokine-neuronal interactions in the mechanisms of persistent pain
持续性疼痛机制中的胶质细胞因子神经元相互作用
  • 批准号:
    7530384
  • 财政年份:
    2008
  • 资助金额:
    $ 32.16万
  • 项目类别:
Cytokine pathways and orofacial pain
细胞因子途径和口面部疼痛
  • 批准号:
    7072268
  • 财政年份:
    2003
  • 资助金额:
    $ 32.16万
  • 项目类别:

相似国自然基金

β2AR激动剂与微秒电刺激对大鼠肛提肌线粒体有氧代谢酶及其多模态影像表型的影响研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
环境激素壬基酚对变应性鼻炎的影响及其对GPER特异性激动剂G-1在变应性鼻炎治疗作用中的干扰机制研究
  • 批准号:
    82000963
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
促生长激素释放激素激动剂抑制平滑肌细胞转分化对动脉粥样硬化的影响及机制研究
  • 批准号:
    81900389
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
五羟色胺2C受体激动剂对2型糖尿病小鼠β细胞功能的影响及机制研究
  • 批准号:
    81803644
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
cAMP信号激动剂对恶性胶质瘤血管新生和血管正常化的影响及机制研究
  • 批准号:
    81803568
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The role of nigrostriatal and striatal cell subtype signaling in behavioral impairments related to schizophrenia
黑质纹状体和纹状体细胞亚型信号传导在精神分裂症相关行为障碍中的作用
  • 批准号:
    10751224
  • 财政年份:
    2024
  • 资助金额:
    $ 32.16万
  • 项目类别:
Dravet Syndrome Anti-Epileptic Control by Targeting GIRK Channels
通过针对 GIRK 通道进行 Dravet 综合征抗癫痫控制
  • 批准号:
    10638439
  • 财政年份:
    2023
  • 资助金额:
    $ 32.16万
  • 项目类别:
The role of core circadian regulator Bmal1 in axonal regeneration and nerve repair
核心昼夜节律调节因子 Bmal1 在轴突再生和神经修复中的作用
  • 批准号:
    10677932
  • 财政年份:
    2023
  • 资助金额:
    $ 32.16万
  • 项目类别:
Stabilizing the tripartite synaptic complex following TBI
TBI 后稳定三方突触复合体
  • 批准号:
    10844877
  • 财政年份:
    2023
  • 资助金额:
    $ 32.16万
  • 项目类别:
Targeting Trained Immunity in Trauma-Induced Immune Dysregulation
针对创伤引起的免疫失调中训练有素的免疫力
  • 批准号:
    10714384
  • 财政年份:
    2023
  • 资助金额:
    $ 32.16万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了