Advanced genetic engineering technology development
先进基因工程技术开发
基本信息
- 批准号:8145528
- 负责人:
- 金额:$ 229.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-30 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:AchievementAddressAffectAmericanAnimal ModelAnimalsAntihypertensive AgentsAwardBiological ModelsCardiovascular DiseasesCellsDevelopmental ProcessDiseaseEmbryoEngineeringGenesGenetic EngineeringGenetic ResearchGenomeGenome engineeringGoldHumanHypertensionKidney DiseasesKidney FailureKnock-in MouseKnock-outLaboratoriesLaboratory RatLaboratory miceMethodsModelingMusMutagenesisNamesPhysiologyProcessRattusResearchResearch PersonnelRoleScientistStem cellsTechnologyTestingTissuesUnited States National Institutes of HealthWorkZinc Fingersabstractinggene replacementhuman diseaseinnovationinterestknockout animalknockout genenovel strategiesnucleasepublic health relevanceresearch studytechnology developmentvertebrate genome
项目摘要
DESCRIPTION (Provided by the applicant)
Abstract: The NIH created the Director's New Innovator Award to ""support exceptionally creative new investiga- tors who propose highly innovative projects that have the potential for unusually high impact."" I have been working for more than ten years on new and innovative approaches for manipulating vertebrate genomes. Having the ability to manipulate specific genes in laboratory model systems has been the gold standard of genetic research for many years, but the most useful strategies for specifically knocking out (disrupting) or knocking in (adding) specific genes precisely into the genome has been limited to mice. However, laboratory mice are not always the best model system for understanding human physiology and disease. If we can expand these genome engineering approaches to other species it will have a tremendous impact on human disease research because we will finally be able to study specific genes in the most relevant animal models. Recently, my colleagues and I were the first in the world to target and knock out genes in the laboratory rat, the most widely studied research animal model by physiologists, behavioralists, neuroscientists, nutritionalists, and by researchers in- terested in cardiovascular and kidney diseases. This technological achievement was named by The Scientist as one of the 'Top 10 Innovations' in 2009. By applying a Zinc-Finger Nuclease (ZFN) technology to the rat embryo, generating knockout animal models for specific genes becomes very rapid because it does not require the labor of engineering stem cells and then turning those stem cells into a whole animal. We have been very successful with this approach and have now knocked out 57 genes related to hypertension and renal failure in humans in the past year - something that was not possible even 2 years ago. Using ZFNs for gene knockout, however, is just the beginning of what can be done with this technology. Specifically, we now know that gene knockin approaches in the rat embryo are now possible , but much remains to be explored. We propose to understand the capabilities and limitations of ZFNs of knockin engineering to enable rapid and reproducible methods for addressing hypotheses related to genes involved in any vertebrate model system for virtually any disease or developmental process. For us, the model system is the rat and the disease we study is hypertension, but the innovative approaches developed by this proposal will serve as a blueprint for any model system where embryos can be isolated. Specifically, we will use ZFN knockin technology to enable conditional mutagenesis and whole gene replacement approaches in the rat to develop new and valuable models to address hypotheses related to hypertension and evaluate new anti- hypertensive therapies and make an impact on the estimated 28% of Americans and more than one billion people world-wide affected by this disease.
Public Health Relevance: The key to developing effective targeted therapies for the treatment of human disease such is the understanding of how genes, cells and tissues are involved in specific disease processes. Genetic engineering in mice to understand these roles has been the gold standard for many years, but we have developed new approaches which are potentially applicable to any research animal model, including rats. The proposed studies aim to establish highly innovative and widely applicable approaches for studying specific genes in cells and tissues in any model system and to develop better animal models for testing therapies for diseases like hypertension.
描述(由申请人提供)
摘要:美国国立卫生研究院 (NIH) 设立了主任新创新者奖,以“支持那些提出具有非凡影响力的高度创新项目的极具创造力的新研究者。”十多年来,我一直在研究新的创新方法。用于操纵脊椎动物基因组。多年来,在实验室模型系统中操纵特定基因的能力一直是基因研究的黄金标准,但精确地敲除(破坏)或敲入(添加)特定基因到基因组中的最有用的策略一直受到限制给老鼠。然而,实验室小鼠并不总是了解人类生理和疾病的最佳模型系统。如果我们能够将这些基因组工程方法扩展到其他物种,这将对人类疾病研究产生巨大影响,因为我们最终将能够在最相关的动物模型中研究特定基因。最近,我和我的同事是世界上第一个针对并敲除实验室大鼠基因的人,这是生理学家、行为学家、神经科学家、营养学家以及对心血管和肾脏疾病感兴趣的研究人员研究最广泛的研究动物模型。这项技术成果被《科学家》评为 2009 年“十大创新”之一。通过将锌指核酸酶 (ZFN) 技术应用于大鼠胚胎,生成特定基因的敲除动物模型变得非常快速,因为它不需要需要对干细胞进行改造,然后将这些干细胞转化为完整的动物。我们的这种方法非常成功,在过去的一年里我们已经敲除了人类中与高血压和肾衰竭相关的 57 个基因——这在两年前是不可能的。然而,使用 ZFN 进行基因敲除只是这项技术的开始。具体来说,我们现在知道大鼠胚胎中的基因敲入方法现在是可能的,但仍有许多事情有待探索。我们建议了解敲入工程 ZFN 的能力和局限性,以便能够采用快速且可重复的方法来解决与几乎任何疾病或发育过程的任何脊椎动物模型系统中涉及的基因相关的假设。对我们来说,模型系统是老鼠,我们研究的疾病是高血压,但该提案开发的创新方法将成为任何可以分离胚胎的模型系统的蓝图。具体来说,我们将使用 ZFN 敲入技术在大鼠中实现条件诱变和全基因替换方法,以开发新的有价值的模型来解决与高血压相关的假设并评估新的抗高血压疗法,并对估计 28% 的美国人产生影响全球有超过十亿人受到这种疾病的影响。
公共卫生相关性:开发有效的靶向疗法来治疗人类疾病的关键是了解基因、细胞和组织如何参与特定的疾病过程。多年来,通过小鼠基因工程来了解这些作用一直是黄金标准,但我们开发了新方法,可能适用于任何研究动物模型,包括大鼠。拟议的研究旨在建立高度创新且广泛适用的方法来研究任何模型系统中细胞和组织中的特定基因,并开发更好的动物模型来测试高血压等疾病的疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aron M Geurts其他文献
Aron M Geurts的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aron M Geurts', 18)}}的其他基金
Role of chromatin conformation in BP Regulation
染色质构象在血压调节中的作用
- 批准号:
10023347 - 财政年份:2020
- 资助金额:
$ 229.5万 - 项目类别:
Role of chromatin conformation in BP Regulation
染色质构象在血压调节中的作用
- 批准号:
10460347 - 财政年份:2020
- 资助金额:
$ 229.5万 - 项目类别:
Role of chromatin conformation in BP Regulation
染色质构象在血压调节中的作用
- 批准号:
10667385 - 财政年份:2020
- 资助金额:
$ 229.5万 - 项目类别:
Role of chromatin conformation in BP Regulation
染色质构象在血压调节中的作用
- 批准号:
10238141 - 财政年份:2020
- 资助金额:
$ 229.5万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Integrative Analysis of Adaptive Information Processing and Learning-Dependent Circuit Reorganization in the Auditory System
听觉系统中自适应信息处理和学习依赖电路重组的综合分析
- 批准号:
10715925 - 财政年份:2023
- 资助金额:
$ 229.5万 - 项目类别:
Assessing Clinical Effectiveness and Implementation of Worksite Sleep Health Coaching in Firefighters
评估消防员工作现场睡眠健康指导的临床效果和实施情况
- 批准号:
10585123 - 财政年份:2023
- 资助金额:
$ 229.5万 - 项目类别:
Developing a U.S. National Cohort to Improve Virologic Suppression among Stimulant-using Men Living with HIV.
建立美国国家队列以改善使用兴奋剂的艾滋病毒男性感染者的病毒抑制。
- 批准号:
10675863 - 财政年份:2023
- 资助金额:
$ 229.5万 - 项目类别:
Programs for the Training and Advancement of the Next GENeration of Native Researchers in Genetics, Ethics and Society
下一代本土遗传学、伦理学和社会研究人员的培训和提升计划
- 批准号:
10841760 - 财政年份:2023
- 资助金额:
$ 229.5万 - 项目类别: