DMS/NIGMS 2: A Stability Driven Recommendation System for Efficient Disease Mechanistic Discovery
DMS/NIGMS 2:用于高效疾病机制发现的稳定性驱动推荐系统
基本信息
- 批准号:10793779
- 负责人:
- 金额:$ 27.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-25 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAwarenessBiologicalCase StudyClinical TrialsComplexDataData ScienceDecision TreesDependenceDiseaseEffectivenessEntropyEtiologyFollow-Up StudiesGene SilencingGenesGeneticGenomeHandHeadHeart DiseasesHeart HypertrophyHeritabilityHumanInvestigationLearningLinkage DisequilibriumMeasuresMethodologyMethodsModelingNational Institute of General Medical SciencesNoisePopulationProblem SetsProcessProteinsRecommendationResearch PersonnelRisk FactorsSamplingSignal TransductionSmall Interfering RNASourceStatistical Data InterpretationStructureSurvival AnalysisSystemTestingValidationVariantWeightWorkclinical practicecohortcostdisease heterogeneitydisease phenotypeeffective therapyexperimental studyflexibilityfollow-upgene interactiongenome wide association studyimprovedinduced pluripotent stem cell derived cardiomyocytesinsightmultimodalitynovelrandom forestsimulationsuccesstrait
项目摘要
Overview. It is crucial to uncover the biological features underlying disease mechanisms to develop
effective treatments and therapies. Typically, this is done via a two-step process: in stage 1, statistical
analyses are used to recommend candidate variants/genes for follow-up investigation. In stage 2,
researchers conduct costly experiments, clinical trials, or external studies via independent cohorts to
validate or establish causality between candidate features and disease traits. To minimize costs,
recommendations should lead to high-yield experiments and be replicable. These recommendations are
often generated through GWAS methods, based on linear mixed models. Despite the successes of
GWAS, there still exists a substantial heritability gap limiting the applicability of these associations in
clinical practice. A number of key issues can contribute to missing heritability including: the need for more
informative, multi-modal features; unidentified non-linear and epistatic effects; linkage disequilibrium
among variants; and heterogeneous sources of variability. To confront these challenges, we propose a
reality-checked stability-driven feature recommendation system based on decision trees that aims at
efficient discoveries for high yields in experimentation. We build upon iterative random forests (iRF) and
the veridical data science framework based on the principles of Predictability, Computability and Stability
(PCS) developed by the PI to propose a number of novel advances for stage 1. We propose: (1)
generalized MDI (gMDI) a stability-driven non-linear feature important measure for improving iRF
recommendations; (2) dependence-aware feature and interaction discovery; (3) supervised local feature
importance for heterogeneous mechanistic discoveries; and (4) validation through gene-silencing
experiments. Importantly, we generate multi-modal features to extract information across the genome.
Intellectual Merit. Our proposals: improve MDI-based methods by addressing drawbacks of MDI and
tailoring to problem settings; incorporate gMDI and dependence structure in iRF; and detect
heterogeneous sources of noise. Each aim will be vetted and follow the veridical data science framework.
In the case study, we will recommend genes and interactions for gene-silencing experiments. These will
supply valuable insights into genetic mechanisms underlying traits related to cardiac hypertrophy. Results
of this work will impact mechanistic discovery for complex diseases and advance statistical methodology.
概述。揭示发展的生物学特征至关重要
有效的治疗和疗法。通常,这是通过两步过程完成的:在第1阶段,统计
分析用于建议候选变体/基因进行后续研究。在第2阶段,
研究人员通过独立队列进行昂贵的实验,临床试验或外部研究
验证或建立候选特征和疾病特征之间的因果关系。为了最大程度地减少成本,
建议应导致高收益实验并具有可复制性。这些建议是
通常是通过线性混合模型通过GWAS方法生成的。尽管取得了成功
GWAS,仍然存在一个巨大的遗传差距,限制了这些关联的适用性
临床实践。许多关键问题可能导致缺少遗传力,包括:需要更多
信息丰富的多模式特征;身份不明的非线性和上皮效应;连锁不平衡
在变体中;和异质的可变性来源。为了面对这些挑战,我们提出了一个
基于决策树的实现现实检查的稳定性驱动的功能推荐系统
实验中高收率的有效发现。我们建立在迭代的随机森林(IRF)和
基于可预测性,可计算性和稳定性原理的垂直数据科学框架
(PC)由PI开发以提出阶段1的许多新颖进步。我们提出:(1)
广义MDI(GMDI)稳定性驱动的非线性特征用于改善IRF的重要措施
建议; (2)依赖感知功能和互动发现; (3)监督当地功能
对于异质机械发现的重要性; (4)通过基因沉默验证
实验。重要的是,我们生成多模式特征以在整个基因组中提取信息。
智力优点。我们的建议:通过解决MDI和MDI的缺点来改善基于MDI的方法
针对问题设置量身定制;将GMDI和依赖性结构纳入IRF;并检测
噪音的异质来源。每个目标都将进行审查,并遵循Veridical数据科学框架。
在案例研究中,我们将建议基因和基因分解实验的相互作用。这些会
提供对与心脏肥大有关的遗传机制的宝贵见解。结果
这项工作将影响复杂疾病的机理发现并提高统计方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bin Yu其他文献
Bin Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bin Yu', 18)}}的其他基金
Understand the function of the MOS4-associated complex in microRNA biogenesis
了解 MOS4 相关复合物在 microRNA 生物发生中的功能
- 批准号:
10458618 - 财政年份:2018
- 资助金额:
$ 27.13万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Move and Snooze: Adding insomnia treatment to an exercise program to improve pain outcomes in older adults with knee osteoarthritis
活动和小睡:在锻炼计划中添加失眠治疗,以改善患有膝骨关节炎的老年人的疼痛结果
- 批准号:
10797056 - 财政年份:2023
- 资助金额:
$ 27.13万 - 项目类别:
Identifying and addressing missingness and bias to enhance discovery from multimodal health data
识别和解决缺失和偏见,以增强多模式健康数据的发现
- 批准号:
10637391 - 财政年份:2023
- 资助金额:
$ 27.13万 - 项目类别:
CRCNS: Dense longitudinal neuroimaging to evaluate learning in childhood
CRCNS:密集纵向神经影像评估儿童学习情况
- 批准号:
10835136 - 财政年份:2023
- 资助金额:
$ 27.13万 - 项目类别:
Skills and Workforce Core- Ping/Watson
技能和劳动力核心 - Ping/Watson
- 批准号:
10863104 - 财政年份:2023
- 资助金额:
$ 27.13万 - 项目类别: