Structural mechanism of DNA replication
DNA复制的结构机制
基本信息
- 批准号:10786193
- 负责人:
- 金额:$ 22.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-07 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:ArchaeaArchitectureBacteriaBindingBiologyCancer EtiologyCell CycleCollaborationsComplexCryoelectron MicroscopyDNADNA PrimaseDNA biosynthesisDNA-Directed DNA PolymeraseEukaryotic CellG1 PhaseIn VitroLifeMalignant NeoplasmsMammalsMethodologyModelingMolecularMolecular MachinesMotorNaturePolymeraseProcessProliferatingProteinsReplication ErrorReplication InitiationReplication OriginResearchSideStructurecancer therapycell growthchromosome replicationds-DNAhelicasehuman diseaseorigin recognition complexreconstitutionrecruitrepairedsuccesstumorigenesis
项目摘要
Project Summary
It is generally thought that DNA replication evolved twice, independently in Bacteria and in
Archaea/Eukarya, because the principal components of the replication machinery (such as the
replicative helicase and the DNA polymerases) are not evolutionarily related in the two branches
of life. In mammals, chromosome replication error, or insufficient correction of a replication error,
is a major cause of cancers. Initiation of DNA replication occurs in G1 phase of the cell cycle,
when the replication initiator Cdc6 binds and activates the origin recognition complex (ORC) to
recruit Cdt1-bound Mcm2-7 hexamer, thereby assembling an inactive Mcm2-7 double hexamer
on double-stranded DNA. The molecular mechanism of this multistep initiation process is not
well understood. During G1-to-S transition, the Mcm2-7 double hexamer is converted to two
active replicative helicases, the Cdc45-Mcm2-7-GINS (CMG) complexes. To synthesize DNA,
the primases and polymerases and over a dozen additional protein factors assemble around the
CMG helicase to form the replisome progression complex (RPC). Because of its sheer size and
dynamic nature, very little is known about the eukaryotic replisome architecture. However,
recent advances in cryo-EM methodology, along with the most recent and spectacular success
in in vitro reconstitutions of origin activation, the leading strand and the lagging strand DNA
synthesis, have made it feasible to tackle these challenges. Over the past decade, we have
collaborated with experts in eukaryotic DNA replication to determine atomic models of several
replication complexes, including the OCCM, which is an ORC-Cdc6-Cdt1-Mcm2-7 loading
intermediate on DNA; the Mcm2-7 double-hexamer on DNA; and the CMG helicase on a forked
DNA. We have shown that the leading strand polymerase epsilon binds to the C-tier motor ring,
whereas the Pol alpha-primase is recruited by Ctf4 to the N-tier ring side of the CMG helicase.
Therefore, the two polymerases ride on opposite sides of the helicase, resulting in a profoundly
asymmetric replisome architecture. Building on these successes, the PI proposes to continue
the collaborative and mechanistic study of replication origin activation and replisome
architecture. The proposed research is significant because replication is central to cellular
growth and because dysregulation of replication can lead to uncontrolled proliferation and
tumorigenesis.
项目概要
人们普遍认为 DNA 复制进化了两次,在细菌中和在
古细菌/真核生物,因为复制机器的主要组成部分(例如
复制解旋酶和 DNA 聚合酶)在这两个分支中没有进化相关性
的生活。在哺乳动物中,染色体复制错误或复制错误纠正不充分,
是癌症的一个主要原因。 DNA复制的起始发生在细胞周期的G1期,
当复制起始子 Cdc6 结合并激活起源识别复合物 (ORC)
招募 Cdt1 结合的 Mcm2-7 六聚体,从而组装无活性的 Mcm2-7 双六聚体
在双链DNA上。这种多步骤引发过程的分子机制并不
很好理解。在 G1 到 S 的转变过程中,Mcm2-7 双六聚体转化为两个
活性复制解旋酶,Cdc45-Mcm2-7-GINS (CMG) 复合物。为了合成DNA,
引物酶和聚合酶以及十多种其他蛋白质因子聚集在
CMG 解旋酶形成复制体进展复合物 (RPC)。由于其庞大的规模和
动态性质,人们对真核复制体结构知之甚少。然而,
冷冻电镜方法的最新进展,以及最近取得的巨大成功
体外重构起始激活、前导链和滞后链 DNA
综合,使应对这些挑战成为可能。过去十年,我们
与真核 DNA 复制领域的专家合作,确定了多种基因的原子模型
复制复合物,包括 OCCM,它是一个 ORC-Cdc6-Cdt1-Mcm2-7 负载
DNA 中间体; DNA 上的 Mcm2-7 双六聚体;和分叉上的 CMG 解旋酶
脱氧核糖核酸。我们已经证明前导链聚合酶 epsilon 与 C 层电机环结合,
而 Pol α-引物酶被 Ctf4 招募到 CMG 解旋酶的 N 层环侧。
因此,两种聚合酶位于解旋酶的相反两侧,从而产生了深刻的影响。
不对称复制体结构。在这些成功的基础上,PI 建议继续
复制起点激活和复制体的协作和机制研究
建筑学。拟议的研究意义重大,因为复制是细胞的核心
生长,因为复制失调会导致不受控制的增殖和
肿瘤发生。
项目成果
期刊论文数量(38)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Saccharomyces cerevisiae Yta7 ATPase hexamer contains a unique bromodomain tier that functions in nucleosome disassembly.
- DOI:10.1016/j.jbc.2022.102852
- 发表时间:2023-03
- 期刊:
- 影响因子:4.8
- 作者:Wang, Feng;Feng, Xiang;He, Qing;Li, Hua;Li, Huilin
- 通讯作者:Li, Huilin
Molecular mechanisms of eukaryotic origin initiation, replication fork progression, and chromatin maintenance.
- DOI:10.1042/bcj20200065
- 发表时间:2020-09-30
- 期刊:
- 影响因子:0
- 作者:Yuan Z;Li H
- 通讯作者:Li H
Cdc6-induced conformational changes in ORC bound to origin DNA revealed by cryo-electron microscopy.
- DOI:10.1016/j.str.2012.01.011
- 发表时间:2012-03-07
- 期刊:
- 影响因子:5.7
- 作者:Sun, Jingchuan;Kawakami, Hironori;Zech, Juergen;Speck, Christian;Stillman, Bruce;Li, Huilin
- 通讯作者:Li, Huilin
Structure of the human UBR5 E3 ubiquitin ligase.
- DOI:10.1016/j.str.2023.03.010
- 发表时间:2023-05-04
- 期刊:
- 影响因子:5.7
- 作者:Wang, Feng;He, Qing;Zhan, Wenhu;Yu, Ziqi;Finkin-Groner, Efrat;Ma, Xiaojing;Lin, Gang;Li, Huilin
- 通讯作者:Li, Huilin
Water skating: How polymerase sliding clamps move on DNA.
- DOI:10.1111/febs.15740
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Li H;Zheng F;O'Donnell M
- 通讯作者:O'Donnell M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huilin Li其他文献
Huilin Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Huilin Li', 18)}}的其他基金
Novel Computational Methods for Microbiome Data Analysis in Longitudinal Study
纵向研究中微生物组数据分析的新计算方法
- 批准号:
10660234 - 财政年份:2023
- 资助金额:
$ 22.1万 - 项目类别:
Molecular mechanisms for sorting lysosomal proteins
溶酶体蛋白分选的分子机制
- 批准号:
10521596 - 财政年份:2022
- 资助金额:
$ 22.1万 - 项目类别:
Molecular mechanisms for sorting lysosomal proteins
溶酶体蛋白分选的分子机制
- 批准号:
10662534 - 财政年份:2022
- 资助金额:
$ 22.1万 - 项目类别:
The structure and function of eukaryotic protein glycosylation enzymes
真核蛋白质糖基化酶的结构和功能
- 批准号:
10412104 - 财政年份:2018
- 资助金额:
$ 22.1万 - 项目类别:
Molecular mechanisms of protein glycosylation and trafficking
蛋白质糖基化和运输的分子机制
- 批准号:
10655796 - 财政年份:2018
- 资助金额:
$ 22.1万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Systematic Discovery and Analysis of Small Proteins and Small ORFs in Mycobacteria
分枝杆菌中小蛋白和小 ORF 的系统发现和分析
- 批准号:
10221007 - 财政年份:2020
- 资助金额:
$ 22.1万 - 项目类别:
Systematic Discovery and Analysis of Small Proteins and Small ORFs in Mycobacteria
分枝杆菌中小蛋白和小 ORF 的系统发现和分析
- 批准号:
10663206 - 财政年份:2020
- 资助金额:
$ 22.1万 - 项目类别:
Systematic Discovery and Analysis of Small Proteins and Small ORFs in Mycobacteria
分枝杆菌中小蛋白和小 ORF 的系统发现和分析
- 批准号:
10452528 - 财政年份:2020
- 资助金额:
$ 22.1万 - 项目类别:
Structural Basis of “Force from Lipids” Activation in Mechanosensitive Channels
机械敏感通道中“脂质力”激活的结构基础
- 批准号:
10454805 - 财政年份:2019
- 资助金额:
$ 22.1万 - 项目类别: