Nano-Scale Processes of Dendrogenesis

树突发生的纳米级过程

基本信息

项目摘要

DESCRIPTION (provided by applicant): Proper wiring of the nervous system requires interplay of intrinsic and extrinsic signals that shape neurite development, architecture and function. Whereas axonal development is relatively well understood, less is known of the forces that shape dendrites, especially the nano-scale filopodia that decorate developing dendritic shafts. What factors influence dendritic filopodia during wiring of brain circuits? Do filopodia contribute to formation of dendritic spines, sites of synaptic information processing and plasticity? We hypothesize that chemical cues in substrate-bound gradients instruct dendrite morphogenesis and maturation via nanometer-scale changes that transform collateral filopodia into spines. We will build upon our recent success in culturing hippocampal neurons from early post-natal rat at very low densities in refined microfluidic environments. Centered in neuroscience, this R21 proposal bridges with materials science to create and exploit complex gradient chemical fields-ones embedding nanometer scale design rules and capable of imprinting the physical environments of neurons in culture with specific immobilized and diffusive factors. These experimental competencies are provided by state-of-the-art microfluidic systems that exploit a variety of physical behaviors to actuate programmed chemo-temporal profiles within the device. Specific aims are to: 1) characterize collateral filopodial behavior in response to 2D surface gradients of bioactive molecules, and 2) build upon these findings to construct 3D gradient environments that encourage filopodial differentiation and enable responses to diffusive stimuli. Models are hippocampal neurons of early post-natal rat and EGFP-actin transgenic mouse. We seek to discover novel insights, solutions and applications that impact mental health, neural repair and restoration of function. The intransigence of brain disorders and damage to treatment is of rising concern as many incurable conditions (schizophrenia, depression, Parkinson's and Alzheimer's disease) have huge economic costs and will increase with the aging of our population. PUBLIC HEALTH RELEVANCE: Nano-scale Processes of Dendrogenesis Proper wiring of the nervous system requires interplay of intrinsic and extrinsic signals that shape neurite development, architecture and function. This proposal seeks to understand the role of nano-scale filopodia in hippocampal dendrogenesis and spine formation by bridging neuroscience with materials science to create and exploit complex gradient chemical fields embedding nanometer-scale design features in nanoliter physical environments. This innovative approach positions us to discover novel insights for normal dendritic spine formation that will offer new strategies, solutions and applications that impact mental health, neural repair and restoration of function, which are of rising concern as many incurable conditions (schizophrenia, depression, Parkinson's and Alzheimer's disease) have huge economic costs and will increase with the aging of our population.
描述(由申请人提供):神经系统的正确连接需要塑造神经突发育、结构和功能的内在和外在信号的相互作用。 虽然轴突发育相对较好,但对塑造树突的力量却知之甚少,尤其是装饰发育中的树突轴的纳米级丝状伪足。 哪些因素会影响大脑回路布线过程中的树突状丝状伪足? 丝状伪足是否有助于树突棘、突触信息处理和可塑性部位的形成? 我们假设底物结合梯度中的化学线索通过纳米级的变化指导树突形态发生和成熟,将侧支丝状伪足转化为脊柱。 我们将在最近成功地在精细的微流体环境中以非常低的密度培养产后早期大鼠的海马神经元的基础上再接再厉。 该 R21 提案以神经科学为中心,与材料科学相结合,创建和利用复杂的梯度化学场——嵌入纳米级设计规则,并能够用特定的固定和扩散因子在培养物中印记神经元的物理环境。 这些实验能力由最先进的微流体系统提供,该系统利用各种物理行为来驱动设备内的编程化学时间曲线。 具体目标是:1) 表征响应生物活性分子 2D 表面梯度的附带丝状伪足行为,2) 基于这些发现构建 3D 梯度环境,促进丝状伪足分化并能够对扩散刺激做出反应。 模型是产后早期大鼠和EGFP-肌动蛋白转基因小鼠的海马神经元。 我们寻求发现影响心理健康、神经修复和功能恢复的新颖见解、解决方案和应用。 大脑疾病的顽固性和对治疗的损害日益引起人们的关注,因为许多无法治愈的疾病(精神分裂症、抑郁症、帕金森病和阿尔茨海默病)会造成巨大的经济损失,并且随着人口老龄化而增加。 公共健康相关性:树突发生的纳米级过程 神经系统的正确连接需要塑造神经突发育、结构和功能的内在和外在信号的相互作用。 该提案旨在通过将神经科学与材料科学联系起来,创建和利用在纳升物理环境中嵌入纳米级设计特征的复杂梯度化学场,了解纳米级丝状伪足在海马树突状细胞生成和脊柱形成中的作用。 这种创新方法使我们能够发现正常树突棘形成的新见解,这将提供影响心理健康、神经修复和功能恢复的新策略、解决方案和应用,这些与许多无法治愈的疾病(精神分裂症、抑郁症、帕金森氏症)一样受到越来越多的关注。和阿尔茨海默病)会带来巨大的经济成本,并且随着人口老龄化而增加。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Martha U Gillette其他文献

Martha U Gillette的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Martha U Gillette', 18)}}的其他基金

Dynamic Circadian Regulation of the Blood-Brain Interface in a Human Brain-mimicking Microfluid Chip
模拟人脑微流体芯片中血脑界面的动态昼夜节律调节
  • 批准号:
    10318466
  • 财政年份:
    2021
  • 资助金额:
    $ 23.78万
  • 项目类别:
Dynamic Circadian Regulation of the Blood-Brain Interface in a Human Brain-mimicking Microfluid Chip
模拟人脑微流体芯片中血脑界面的动态昼夜节律调节
  • 批准号:
    10912839
  • 财政年份:
    2021
  • 资助金额:
    $ 23.78万
  • 项目类别:
High Resolution Analysis of miR125b in Dendrites via Microfluidic Devices
通过微流体装置对树突中的 miR125b 进行高分辨率分析
  • 批准号:
    8571230
  • 财政年份:
    2013
  • 资助金额:
    $ 23.78万
  • 项目类别:
Nano-Scale Processes of Dendrogenesis
树突发生的纳米级过程
  • 批准号:
    7882602
  • 财政年份:
    2009
  • 资助金额:
    $ 23.78万
  • 项目类别:
Neuropeptidomics of Clock-to-Clock Coupling
时钟与时钟耦合的神经肽组学
  • 批准号:
    7736240
  • 财政年份:
    2009
  • 资助金额:
    $ 23.78万
  • 项目类别:
Neuropeptidomics of Clock-to-Clock Coupling
时钟与时钟耦合的神经肽组学
  • 批准号:
    7924746
  • 财政年份:
    2009
  • 资助金额:
    $ 23.78万
  • 项目类别:
Actin-based Neuronal State Changes
基于肌动蛋白的神经元状态变化
  • 批准号:
    7321299
  • 财政年份:
    2007
  • 资助金额:
    $ 23.78万
  • 项目类别:
Actin-based Neuronal State Changes
基于肌动蛋白的神经元状态变化
  • 批准号:
    7488953
  • 财政年份:
    2007
  • 资助金额:
    $ 23.78万
  • 项目类别:
Actin-based Neuronal State Changes
基于肌动蛋白的神经元状态变化
  • 批准号:
    7683239
  • 财政年份:
    2007
  • 资助金额:
    $ 23.78万
  • 项目类别:
Actin-based Neuronal State Changes
基于肌动蛋白的神经元状态变化
  • 批准号:
    7898831
  • 财政年份:
    2007
  • 资助金额:
    $ 23.78万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Enhanced Viro-Immunotherapy for Breast Cancer Brain Metastasis
乳腺癌脑转移的增强病毒免疫疗法
  • 批准号:
    10803696
  • 财政年份:
    2023
  • 资助金额:
    $ 23.78万
  • 项目类别:
Pharmacological and phosphoproteomic studies of HIPK4-dependent spermatogenesis
HIPK4 依赖性精子发生的药理学和磷酸蛋白质组学研究
  • 批准号:
    10538548
  • 财政年份:
    2020
  • 资助金额:
    $ 23.78万
  • 项目类别:
Pharmacological and phosphoproteomic studies of HIPK4-dependent spermatogenesis
HIPK4 依赖性精子发生的药理学和磷酸蛋白质组学研究
  • 批准号:
    10274186
  • 财政年份:
    2020
  • 资助金额:
    $ 23.78万
  • 项目类别:
The role and regulation of mTORC2 in cell migration
mTORC2在细胞迁移中的作用和调控
  • 批准号:
    10372956
  • 财政年份:
    2019
  • 资助金额:
    $ 23.78万
  • 项目类别:
Integrators of Metastatic Potential
转移潜能积分器
  • 批准号:
    10357854
  • 财政年份:
    2019
  • 资助金额:
    $ 23.78万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了