Molecular mechanisms of Werner syndrome helicase in genome stability and aging
维尔纳综合征解旋酶在基因组稳定性和衰老中的分子机制
基本信息
- 批准号:10729915
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAgingArchitectureAwardBindingBinding ProteinsBiochemicalBiochemistryBiologicalBiological ModelsBiologyBiophysicsBloom SyndromeCell AgingCell LineCellsCellular biologyComplementComplexCryoelectron MicroscopyDNADNA DamageDNA RepairDNA Repair EnzymesDNA Repair PathwayDNA StructureDataDedicationsDiseaseExonucleaseFamilyFoundationsFunctional disorderFutureG-QuartetsGenesGenomeGenome StabilityGenomic InstabilityGoalsHereditary DiseaseHeritabilityHumanHuman BiologyImmune signalingIndividualInflammationInflammatoryInsectaInstitutionInterferonsLengthMaintenanceMalignant NeoplasmsMentorsMicroscopyMolecularMolecular BiologyMonitorMutationNegative StainingOutcomePRKDC genePathologyPathway interactionsPatientsPhasePhenotypePlayPositioning AttributePremature aging syndromeProteinsRepair ComplexResearchResolutionRoleSignal TransductionSingle-Stranded DNAStimulator of Interferon GenesStructureSyndromeTREX1 geneTestingTrainingWerner SyndromeWorkage relatedbiophysical propertiesbiophysical techniquescareercytokineearly onsetexodeoxyribonucleasegenome integrityhelicaseinsightinterdisciplinary approachmutantnormal agingnucleaseoverexpressionpost-doctoral trainingprematurepreventprogramsrecruitreplication factor Asenescencesensorsingle moleculestructural biologytelomeretelomere losstenure track
项目摘要
PROJECT SUMMARY
Progeroid syndromes mimic aging at an accelerated rate and are key to understanding both premature
and normal aging. One class of progeroid syndromes results from defective DNA repair pathways. For example,
Werner syndrome (WS)—a rare inherited disease characterized by premature aging and cancer—is caused by
mutations in the DNA repair helicase WRN. WS patients closely recapitulate many normal aging phenotypes,
making WS a model system for aging. However, the cellular and molecular mechanisms involved in WS
pathologies remain poorly understood. Here, I propose to answer critical questions regarding the functions of
WRN via an interdisciplinary approach that includes structural biology, single-molecule biochemistry, and cell
biology.
My career goal is to establish an independent research program dedicated to understanding the
molecular and cellular mechanisms of genomic instability associated with aging and aging-related diseases. As
a first step to achieving this goal, I have pursued postdoctoral training in single-molecule microscopy and
biochemistry, complementing my background in structural biology and biophysical techniques. The mentoring
phase of the K99/R00 award will provide me with additional training in cryo-electron microscopy, cell biology,
telomere biology, and the biology of human aging through an expert group of mentors and advisors. Here I
propose to: (1) Determine the molecular architecture of full-length WRN (2) Identify how the nuclease and
helicase activities of WRN are regulated (3) Determine how WRN cooperates with telomeric proteins to unwind
G-quadruplexes during telomere replication to prevent telomere loss, and (4) determine how WRN-deficiency
leads to inflammation and premature cellular senescence. Completion of these aims will represent a major step
forward in our understanding of WRN’s role in preventing genomic instability and will lay the groundwork for my
long-term goals to determine the mechanisms of genome maintenance by other DNA repair enzymes and their
importance in human aging and age-related pathologies.
A K99/R00 award will allow me to establish an independent research program that will make me a strong
candidate for a tenure-track position at a leading U.S. research institution. My work will provide important insights
into how WRN and its interaction partners maintain our genomes and help us understand the biological
consequences of WRN dysregulation. Furthermore, these studies will provide a more detailed understanding of
how WRN-deficiency leads to accelerated aging phenotypes found in WS.
项目概要
早衰综合症模仿加速衰老,是理解早衰和早衰的关键
例如,一类早衰综合症是由 DNA 修复途径缺陷引起的。
维尔纳综合征 (WS) 是一种罕见的遗传性疾病,其特征是过早衰老和癌症,由以下疾病引起:
WS 患者的 DNA 修复解旋酶 WRN 突变与许多正常的衰老表型密切相关。
使 WS 成为衰老的模型系统 然而,WS 涉及的细胞和分子机制。
在这里,我建议回答有关功能的关键问题。
WRN 通过跨学科方法,包括结构生物学、单分子生物化学和细胞
生物学。
我的职业目标是建立一个独立的研究项目,致力于了解
与衰老和衰老相关疾病相关的基因组不稳定性的分子和细胞机制。
实现这一目标的第一步是,我接受了单分子显微镜和
生物化学,补充了我在结构生物学和生物物理技术方面的背景。
K99/R00 奖项的阶段将为我提供冷冻电子显微镜、细胞生物学、
我在这里通过导师和顾问专家组研究端粒生物学和人类衰老生物学。
建议: (1) 确定全长 WRN 的分子结构 (2) 确定核酸酶和
WRN解旋酶活性受到调节(3)确定WRN如何与端粒蛋白配合解旋
端粒复制期间的 G-四链体以防止端粒丢失,以及 (4) 确定 WRN 缺陷如何
导致炎症和细胞过早衰老。这些目标的完成将代表着重要的一步。
加深了我们对 WRN 在防止基因组不稳定方面的作用的理解,并将为我的研究奠定基础
确定其他 DNA 修复酶及其作用的基因组维护机制的长期目标
在人类衰老和与年龄相关的病理学中具有重要意义。
K99/R00 奖项将使我能够建立一个独立的研究项目,这将使我成为一名强大的
美国一家领先研究机构的终身职位候选人我的工作将提供重要的见解。
了解 WRN 及其互动合作伙伴如何维护我们的基因组并帮助我们了解生物学
此外,这些研究将提供对 WRN 失调的后果的更详细的了解。
WRN 缺陷如何导致 WS 中发现的加速衰老表型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Soniat其他文献
Michael Soniat的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Soniat', 18)}}的其他基金
Molecular mechanisms of Werner syndrome helicase in genome stability and aging
维尔纳综合征解旋酶在基因组稳定性和衰老中的分子机制
- 批准号:
10322752 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
相似国自然基金
ALA光动力上调炎症性成纤维细胞ZFP36抑制GADD45B/MAPK通路介导光老化皮肤组织微环境重塑的作用及机制研究
- 批准号:82303993
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
YAP1-TEAD通过转录调控同源重组修复介导皮肤光老化的作用机制
- 批准号:82371567
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
微纳核壳结构填充体系构建及其对聚乳酸阻燃、抗老化、降解和循环的作用机制
- 批准号:52373051
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
下丘脑乳头上核-海马齿状回神经环路在运动延缓认知老化中的作用及机制研究
- 批准号:82302868
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单细胞多组学解析脐带间充质干细胞优势功能亚群重塑巨噬细胞极化治疗皮肤光老化的作用与机制
- 批准号:82302829
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Cellular mechanisms for the degeneration and aging of human rotator cuff tears
人类肩袖撕裂变性和衰老的细胞机制
- 批准号:
10648672 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
YAP/TAZ Regulation of Extracellular Matrix Homeostasis
YAP/TAZ 细胞外基质稳态的调节
- 批准号:
10719507 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Molecular Markers of Cerebrovascular Pathologies in Alzheimer's Disease and Related Dementias
阿尔茨海默病和相关痴呆症脑血管病理学的分子标志物
- 批准号:
10806855 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Targeting the microtubule cytoskeleton to promote cavernous nerve regeneration and erectile function after injury
靶向微管细胞骨架促进损伤后海绵体神经再生和勃起功能
- 批准号:
10719124 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别: