Molecular mechanisms of Werner syndrome helicase in genome stability and aging
维尔纳综合征解旋酶在基因组稳定性和衰老中的分子机制
基本信息
- 批准号:10729915
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAgingArchitectureAwardBindingBinding ProteinsBiochemicalBiochemistryBiologicalBiological ModelsBiologyBiophysicsBloom SyndromeCell AgingCell LineCellsCellular biologyComplementComplexCryoelectron MicroscopyDNADNA DamageDNA RepairDNA Repair EnzymesDNA Repair PathwayDNA StructureDataDedicationsDiseaseExonucleaseFamilyFoundationsFunctional disorderFutureG-QuartetsGenesGenomeGenome StabilityGenomic InstabilityGoalsHereditary DiseaseHeritabilityHumanHuman BiologyImmune signalingIndividualInflammationInflammatoryInsectaInstitutionInterferonsLengthMaintenanceMalignant NeoplasmsMentorsMicroscopyMolecularMolecular BiologyMonitorMutationNegative StainingOutcomePRKDC genePathologyPathway interactionsPatientsPhasePhenotypePlayPositioning AttributePremature aging syndromeProteinsRepair ComplexResearchResolutionRoleSignal TransductionSingle-Stranded DNAStimulator of Interferon GenesStructureSyndromeTREX1 geneTestingTrainingWerner SyndromeWorkage relatedbiophysical propertiesbiophysical techniquescareercytokineearly onsetexodeoxyribonucleasegenome integrityhelicaseinsightinterdisciplinary approachmutantnormal agingnucleaseoverexpressionpost-doctoral trainingprematurepreventprogramsrecruitreplication factor Asenescencesensorsingle moleculestructural biologytelomeretelomere losstenure track
项目摘要
PROJECT SUMMARY
Progeroid syndromes mimic aging at an accelerated rate and are key to understanding both premature
and normal aging. One class of progeroid syndromes results from defective DNA repair pathways. For example,
Werner syndrome (WS)—a rare inherited disease characterized by premature aging and cancer—is caused by
mutations in the DNA repair helicase WRN. WS patients closely recapitulate many normal aging phenotypes,
making WS a model system for aging. However, the cellular and molecular mechanisms involved in WS
pathologies remain poorly understood. Here, I propose to answer critical questions regarding the functions of
WRN via an interdisciplinary approach that includes structural biology, single-molecule biochemistry, and cell
biology.
My career goal is to establish an independent research program dedicated to understanding the
molecular and cellular mechanisms of genomic instability associated with aging and aging-related diseases. As
a first step to achieving this goal, I have pursued postdoctoral training in single-molecule microscopy and
biochemistry, complementing my background in structural biology and biophysical techniques. The mentoring
phase of the K99/R00 award will provide me with additional training in cryo-electron microscopy, cell biology,
telomere biology, and the biology of human aging through an expert group of mentors and advisors. Here I
propose to: (1) Determine the molecular architecture of full-length WRN (2) Identify how the nuclease and
helicase activities of WRN are regulated (3) Determine how WRN cooperates with telomeric proteins to unwind
G-quadruplexes during telomere replication to prevent telomere loss, and (4) determine how WRN-deficiency
leads to inflammation and premature cellular senescence. Completion of these aims will represent a major step
forward in our understanding of WRN’s role in preventing genomic instability and will lay the groundwork for my
long-term goals to determine the mechanisms of genome maintenance by other DNA repair enzymes and their
importance in human aging and age-related pathologies.
A K99/R00 award will allow me to establish an independent research program that will make me a strong
candidate for a tenure-track position at a leading U.S. research institution. My work will provide important insights
into how WRN and its interaction partners maintain our genomes and help us understand the biological
consequences of WRN dysregulation. Furthermore, these studies will provide a more detailed understanding of
how WRN-deficiency leads to accelerated aging phenotypes found in WS.
项目摘要
前代综合征以加速速率模仿衰老,并且是理解早熟的关键
和正常衰老。一类后代综合征是由DNA修复途径缺陷引起的。例如,
Werner综合征(WS) - 一种以早衰的特征的罕见遗传性疾病,是由
DNA修复解旋酶WRN中的突变。 WS患者密切概括了许多正常衰老表型,
使WS成为衰老的模型系统。但是,WS中涉及的细胞和分子机制
病理仍然知之甚少。在这里,我建议回答有关功能的关键问题
WRN通过跨学科方法,包括结构生物学,单分子生物化学和细胞
生物学。
我的职业目标是建立一个专门了解的独立研究计划
与衰老和与衰老有关的疾病相关的基因组不稳定性的分子和细胞机制。作为
实现这一目标的第一步,我在单分子显微镜和
生物化学,完成我在结构生物学和生物物理技术方面的背景。心理
K99/R00奖的阶段将为我提供其他关于低温电子显微镜,细胞生物学的培训
端粒生物学,以及人类衰老的生物学通过专家的导师和顾问。我在这里
提示:(1)确定全长WRN的分子结构(2)确定核酸酶和核酸酶和
调节WRN的解旋酶活性(3)确定WRN与远程蛋白的坐标如何放松
端粒复制期间的G四链体以防止端粒损失,(4)确定WRN缺陷的方式
导致炎症和过早的细胞感应。这些目标的完成将代表一个重大步骤
在我们理解WRN在预防基因组不稳定中的作用的过程中,将为我奠定基础
长期目标以确定其他DNA修复酶维持基因组的机制及其
在人衰老和与年龄有关的病理学中的重要性。
K99/R00奖将使我能够建立一个独立的研究计划,这将使我成为强大的
在美国领先的研究机构担任终身职位的候选人。我的工作将提供重要的见解
WRN及其相互作用伙伴如何维持我们的基因组并帮助我们了解生物学
WRN失调的后果。此外,这些研究将提供对
WS中发现WS的衰老表型如何加速了WR。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Soniat其他文献
Michael Soniat的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Soniat', 18)}}的其他基金
Molecular mechanisms of Werner syndrome helicase in genome stability and aging
维尔纳综合征解旋酶在基因组稳定性和衰老中的分子机制
- 批准号:
10322752 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
相似国自然基金
温度作用下CA砂浆非线性老化蠕变性能的多尺度研究
- 批准号:12302265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于波动法的叠层橡胶隔震支座老化损伤原位检测及精确评估方法研究
- 批准号:52308322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微纳核壳结构填充体系构建及其对聚乳酸阻燃、抗老化、降解和循环的作用机制
- 批准号:52373051
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
东北黑土中农膜源微塑料冻融老化特征及其毒性效应
- 批准号:42377282
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高层建筑外墙保温材料环境暴露自然老化后飞火点燃机理及模型研究
- 批准号:52376132
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Cellular mechanisms for the degeneration and aging of human rotator cuff tears
人类肩袖撕裂变性和衰老的细胞机制
- 批准号:
10648672 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
YAP/TAZ Regulation of Extracellular Matrix Homeostasis
YAP/TAZ 细胞外基质稳态的调节
- 批准号:
10719507 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Molecular Markers of Cerebrovascular Pathologies in Alzheimer's Disease and Related Dementias
阿尔茨海默病和相关痴呆症脑血管病理学的分子标志物
- 批准号:
10806855 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Targeting the microtubule cytoskeleton to promote cavernous nerve regeneration and erectile function after injury
靶向微管细胞骨架促进损伤后海绵体神经再生和勃起功能
- 批准号:
10719124 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别: