Development of a Gene-Transfer-Resistant and Biocontained Next-Generation Bacterial Host for Controlled Drug Delivery
开发用于受控药物输送的抗基因转移和生物包容的下一代细菌宿主
基本信息
- 批准号:10784171
- 负责人:
- 金额:$ 11.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-22 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdvisory CommitteesAmino AcidsAmino Acyl-tRNA SynthetasesAmmoniaAnimal ModelAutoimmune DiseasesBacteriaBacteriophagesBiological AssayBiological ProductsCell ProliferationCell SurvivalCellsChurchClinicalCodeCodon NucleotidesDevelopmentDevelopment PlansDiseaseDoseDrug Delivery SystemsDrug KineticsEngineeringEnvironmentEnzymesEscherichia coliExcretory functionFood SupplementsGastrointestinal tract structureGene ExpressionGene TransferGenerationsGenesGeneticGenetic CodeGenetic EngineeringGenetically Modified OrganismsGenomicsGoalsGrowthHalf-LifeHealthHorizontal Gene TransferHumanHuman bodyInheritedLaboratoriesLinkLyaseMalignant NeoplasmsMass Spectrum AnalysisMentorsMetabolic DiseasesMusOrganismPatientsPharmaceutical PreparationsPhasePredatory BehaviorPreventionProductionProliferatingProteomicsResearchResistanceRiskRoleSafetySense CodonSupplementationSystemTechnologyTerminator CodonTest ResultTestingTherapeuticTherapeutic UsesTrainingTransfer RNATransgenesTranslatingTyrosineTyrosinemiasUnited States National Institutes of HealthVariantViralViral GenesVirusVirus DiseasesWorkaddictionbacterial resistancecareer developmentcell growthclinical translationcolonization resistancedrug productionexperimental studyfirewallfitnessgene functiongenetic informationgut colonizationin vivomedical schoolsmicrobialmicrobial hostmicrobiomemicroorganismmouse modelnew technologynext generationnovel therapeuticspeptide drugpreventprogramsresearch and developmentsmall moleculesynthetic biologysynthetic constructtherapeutic developmenttherapeutic enzymetherapeutic genetherapeutic transgeneunnatural amino acidsviral resistancevirus host interaction
项目摘要
Project Summary/Abstract. Synthetic biology transformed our ability to rationally reprogram cells and use
such engineered living organisms, instead of small molecule drugs or biologics, as novel therapeutics.
However, living therapeutics proliferate and release their engineered genetic information into natural biomes
through horizontal gene transfer. Consequently, the widespread use of engineered living therapeutics
necessitates the development of efficient biocontainment technologies that not only prevent the unwanted
proliferation of cells but also eliminate the release of genetic information (transgenes) from such genetically
modified organisms (GMOs).
The overarching goal of my proposal is to solve these challenges and develop the first microbial host
for programmable drug delivery that simultaneously provides tight biocontainment, prevents transgene release
─ horizontal gene transfer ─ into wild organisms, and offers increased stability for long-term drug production.
The PI recently demonstrated that engineering the genetic code of living cells provides a tight, potentially
unbreakable genetic firewall that eliminates horizontal gene transfer and links the survival of cells to the
presence of small molecules not available without human supplementation. However, these early experiments
also revealed significant barriers in front of the clinical translation of this technology. This project will overcome
these barriers and generate a bacterial host for controlled drug production that prevents transgene release and
viral predation while offering strict biocontainment without escape from human therapeutic doses. This goal will
be achieved through 3 specific aims: 1) The construction of a broadly virus-resistant microbial host that
prevents transgene release by generating and characterizing multiple artificial genetic codes. 2) The creation
of a tightly biocontained microbial host that utilizes a safe, food-supplement-based genetic biocontainment
system. Finally, in Aim 3, the PI will combine these developments into a microbial living therapeutic host and
demonstrate in a proof-of-concept experiment that this host enables stable, long-term therapeutic enzyme
production inside the GI tract.
In summary, this work will create a technology and microbial host capable of addressing a wide range
of unmet needs in therapeutics development and de-risk the use of microbial GMOs for clinical translation, with
potentially broad impact on diseases ranging from autoimmune and metabolic disorders to cancer. The
proposed research and career development plan will be conducted in the lab of Dr. George M. Church at
Harvard Medical School, and the PI, Dr. Akos Nyerges, will receive extensive training in proteomics, the use of
animal models, and host-virus interaction analyses during the K99 phase from an expert advisory team. The
career development plan and the outstanding scientific environment of Harvard will enable the PI to achieve
the scientific goals of this proposal, reach scientific independence, and launch his independent research group.
项目摘要/摘要。合成生物学改变了我们合理地重新编程细胞和使用细胞的能力。
这种工程化的活生物体,而不是小分子药物或生物制剂,作为新型疗法。
然而,活体疗法增殖并将其工程遗传信息释放到自然生物群落中
通过水平基因转移测试,工程化活疗法的广泛使用。
需要开发有效的生物防护技术,不仅可以防止不必要的
细胞增殖,但也消除了遗传信息(转基因)的释放
改良生物(GMO)。
我提案的总体目标是解决这些挑战并开发第一个微生物宿主
用于可编程药物输送,同时提供严格的生物防护,防止转基因释放
─ 水平基因转移 ─ 进入野生生物体,并为长期药物生产提供更高的稳定性。
PI 最近证明,对活细胞的遗传密码进行工程设计提供了一种紧密的、潜在的
牢不可破的基因防火墙,消除水平基因转移并将细胞的生存与
然而,如果没有人类补充,小分子的存在是不可能的。
还揭示了该技术临床转化面临的重大障碍。
这些屏障并产生用于受控药物生产的细菌宿主,从而防止转基因释放和
病毒捕食,同时提供严格的生物防护,而不会逃避人类治疗剂量。
通过 3 个具体目标来实现:1)构建广泛抗病毒的微生物宿主
通过生成和表征多个人工遗传密码来防止转基因释放 2) 创建。
严格生物封闭的微生物宿主,利用安全的、基于食品补充剂的遗传生物封闭
最后,在目标 3 中,PI 将把这些进展结合到微生物活治疗宿主和系统中。
在概念验证实验中证明该宿主能够产生稳定、长期的治疗酶
胃肠道内的生产。
总之,这项工作将创造一种能够解决广泛问题的技术和微生物宿主。
治疗药物开发中未满足的需求,并降低使用微生物转基因生物进行临床转化的风险,
对从自身免疫和代谢紊乱到癌症等疾病的潜在广泛影响。
拟议的研究和职业发展计划将在 George M. Church 博士的实验室进行
哈佛医学院和 PI Akos Nyerges 博士将接受蛋白质组学、使用
专家顾问团队在 K99 阶段进行动物模型和宿主-病毒相互作用分析。
职业发展规划和哈佛优秀的科学环境将使PI能够实现
该提案的科学目标,达到科学独立性,并启动他的独立研究小组。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Akos Nyerges其他文献
Akos Nyerges的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Exercise-induced Legacy Health Benefits on Cardiometabolic Risk Factors in Aging Adults with Prediabetes
运动对患有前驱糖尿病的老年人的心脏代谢危险因素的传统健康益处
- 批准号:
10353779 - 财政年份:2022
- 资助金额:
$ 11.67万 - 项目类别:
Role of PPM1D and PPM1D mutations in hematopoiesis and response to stress
PPM1D 和 PPM1D 突变在造血和应激反应中的作用
- 批准号:
10678835 - 财政年份:2022
- 资助金额:
$ 11.67万 - 项目类别:
Role of PPM1D and PPM1D mutations in hematopoiesis and response to stress
PPM1D 和 PPM1D 突变在造血和应激反应中的作用
- 批准号:
10472614 - 财政年份:2022
- 资助金额:
$ 11.67万 - 项目类别:
Methylomic and metabolomic determinants of Lung Function in Asthmatics
哮喘患者肺功能的甲基组学和代谢组学决定因素
- 批准号:
10592399 - 财政年份:2022
- 资助金额:
$ 11.67万 - 项目类别:
Role of PPM1D and PPM1D mutations in hematopoiesis and response to stress
PPM1D 和 PPM1D 突变在造血和应激反应中的作用
- 批准号:
10472614 - 财政年份:2022
- 资助金额:
$ 11.67万 - 项目类别: