Hybrid Antibiotics for Persistent Infections
用于持续感染的混合抗生素
基本信息
- 批准号:10780719
- 负责人:
- 金额:$ 86.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-26 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAntibiotic ResistanceAntibiotic TherapyAntibioticsBacteremiaBacteriaBinding ProteinsBiochemicalBiological AssayCell SurvivalCellsDNA-Directed RNA PolymeraseDataDepsipeptidesDiabetic Foot UlcerDoseDrug KineticsEnsureForeign BodiesGene Expression ProfilingGenetic TranscriptionGenus HippocampusGoalsGrowthHistopathologyHybridsIn VitroIndividualIndwelling CatheterInfectionInfective endocarditisInterphase CellLeadLesionMeasuresMicrobial BiofilmsMicrosomesMitochondriaModelingModificationMonitorMorbidity - disease rateMulti-Drug ResistanceMusMycobacterium tuberculosisNew AgentsPatient CarePeptide HydrolasesPeriprosthetic joint infectionPharmaceutical PreparationsPharmacologyPharmacology StudyPhasePlasmaPlasma ProteinsPopulationProteolysisProteomicsRNARNA Polymerase InhibitorRNA Synthesis InhibitionResistanceResistance developmentRifabutinRifampicin resistanceRifampinRifamycinsSafetySepticemiaSolubilityStaphylococcus aureusStructureStructure-Activity RelationshipSystemTestingThigh structureUreaVancomycinWorkacute infectionanalogantibiotic toleranceantimicrobialcare costschronic infectioncytotoxicitydensitydesignefficacy evaluationefficacy studyimprovedin vitro Assayin vivoin vivo Modelin vivo evaluationknowledge basemethicillin resistant Staphylococcus aureusmortalitymouse modelnovelpathogenpersistent bacteriapharmacologicpre-clinicalpreventrecurrent infectionresistance frequencyresistant strainscreeningsingle moleculestandard of caresubcutaneous
项目摘要
Abstract
The goal of this project is to optimize and study the pharmacology of dual-targeting urea depsipeptide
(UDEP)-rifamycin hybrid antibiotics. These new agents have encouraging potential to treat biofilm-
associated and complicated Gram-positive infections including bacteremia, prosthetic joint
infections, and infective endocarditis, which are difficult to cure with standard of care antibiotics such
as vancomycin and cause significant mortality. Most antibiotics require active bacterial growth to
work effectively. Some bacteria evade killing by traditional antibiotics by growing slowly or not at all,
allowing for survival even at high drug concentrations for prolonged periods. These surviving cells
contribute to antibiotic tolerance and resistance, cause recurrent infections, prolong antibiotic
therapy, and increase associated patient care costs. Recently, we have been using structure-based
design to optimize the pharmacology of UDEP antibiotics, which overcome antibiotic tolerance by
target non-dividing bacteria. UDEPs activate the ClpP protease causing uncontrolled proteolysis,
killing stationary phase, dormant, antibiotic-tolerant cells, and biofilms. Rifampin, currently
prescribed in combination with other antibiotics to treat M. tuberculosis (MTB) and prosthetic joint
infections (PJI), also has activity against non-dividing cells by inhibiting DNA-dependent RNA
polymerase and blocking RNA elongation during transcription. In addition to sharing activity against
slowly-growing bacteria, UDEPs and rifampin also share the requirement to be used in combination
with other antibiotics to prevent resistance development. We hypothesized that synthesizing a dual-
targeting UDEP-rifampin hybrid antibiotic would result in significantly less resistance development
and have the potential to achieve unprecedented activity against biofilms and difficult-to-treat
infections. A single molecule has many advantages over a combination, for example, there is no need
to match the pharmacokinetics, and dosing is simpler. In this proposal, we plan to carefully optimize
UDEP-Rifamycin hybrid antibiotics using a detailed synthesis and testing cascade to ensure agents are
developed that have potent activity against persisters in vitro and in vivo, and a safe pharmacological
profile. The mode of action of the emerging leads will be carefully profiled to study their target
engagement, resistance development, effects on growing and non-growing cells.
抽象的
该项目的目标是优化和研究双靶向尿素缩酚肽的药理学
(UDEP)-利福霉素混合抗生素。这些新药剂在治疗生物膜方面具有令人鼓舞的潜力
相关和复杂的革兰氏阳性感染,包括菌血症、假体关节
感染和感染性心内膜炎,用标准护理抗生素(如
如万古霉素并导致显着的死亡率。大多数抗生素需要活跃的细菌生长才能
有效地工作。有些细菌通过缓慢生长或根本不生长来逃避传统抗生素的杀死,
即使在高药物浓度下也能长时间存活。这些幸存的细胞
导致抗生素耐受性和耐药性,导致反复感染,延长抗生素使用时间
治疗,并增加相关的患者护理费用。最近,我们一直在使用基于结构的
设计优化 UDEP 抗生素的药理学,克服抗生素耐受性
针对非分裂细菌。 UDEP 激活 ClpP 蛋白酶,导致不受控制的蛋白水解,
杀死稳定期、休眠、耐抗生素细胞和生物膜。目前利福平
与其他抗生素联合用于治疗结核分枝杆菌 (MTB) 和假体关节
感染 (PJI),还通过抑制 DNA 依赖性 RNA 来对抗非分裂细胞
聚合酶并在转录过程中阻断 RNA 延伸。除了分享针对
生长缓慢的细菌,UDEP 和利福平也有联合使用的要求
与其他抗生素一起使用以防止耐药性的产生。我们假设合成一个双
靶向 UDEP-利福平混合抗生素将显着减少耐药性的产生
并有潜力实现前所未有的针对生物膜和难以治疗的活性
感染。单个分子比组合有很多优点,例如,不需要
药代动力学相匹配,给药更简单。在这个提案中,我们计划仔细优化
UDEP-利福霉素混合抗生素采用详细的合成和测试级联,以确保药物
开发出对体外和体内持久性药物具有有效活性的药物,并且具有安全的药理作用
轮廓。将仔细分析新兴先导化合物的作用方式,以研究其目标
参与、耐药性发展、对生长和非生长细胞的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael LaFleur其他文献
Michael LaFleur的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael LaFleur', 18)}}的其他基金
Targeting NuoD for the treatment of H. pylori
靶向 NuoD 治疗幽门螺杆菌
- 批准号:
10659783 - 财政年份:2023
- 资助金额:
$ 86.09万 - 项目类别:
Development of a Dual-Targeting ClpP Activating Antibiotic
双靶点 ClpP 激活抗生素的开发
- 批准号:
10760586 - 财政年份:2023
- 资助金额:
$ 86.09万 - 项目类别:
A New Approach to Treat Prosthetic Joint Infections with a ClpP Activating Antibiotic
使用 ClpP 激活抗生素治疗假体关节感染的新方法
- 批准号:
10365956 - 财政年份:2021
- 资助金额:
$ 86.09万 - 项目类别:
A New Approach to Treat Prosthetic Joint Infections with a ClpP Activating Antibiotic
使用 ClpP 激活抗生素治疗假体关节感染的新方法
- 批准号:
10576404 - 财政年份:2021
- 资助金额:
$ 86.09万 - 项目类别:
Development of ureadepsipetides for drug-resistant infections
治疗耐药感染的脲肽肽的开发
- 批准号:
10063811 - 财政年份:2018
- 资助金额:
$ 86.09万 - 项目类别:
Development of ureadepsipetides for drug-resistant infections
治疗耐药感染的脲肽肽的开发
- 批准号:
10525228 - 财政年份:2018
- 资助金额:
$ 86.09万 - 项目类别:
Development of ureadepsipetides for drug-resistant infections
治疗耐药感染的脲肽肽的开发
- 批准号:
10308010 - 财政年份:2018
- 资助金额:
$ 86.09万 - 项目类别:
Bactericidal antibiotic for Vancomycin Resistant Enterococci
针对万古霉素耐药肠球菌的杀菌抗生素
- 批准号:
9243208 - 财政年份:2016
- 资助金额:
$ 86.09万 - 项目类别:
相似国自然基金
多环芳烃影响大肠杆菌抗生素耐药性进化的分子机制
- 批准号:32301424
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向铜绿假单胞菌FpvA蛋白的铁载体偶联抗生素克服细菌耐药性及作用机制研究
- 批准号:82304313
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
乙醇脱氢酶AdhB介导肺炎链球菌抗生素耐药性的机制研究
- 批准号:32300154
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
鸭肠道菌群抗生素耐药性分布及替抗噬菌体内溶素鉴定研究
- 批准号:32360830
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
消毒剂-抗生素循环压力下鲍曼不动杆菌耐药性演变及其作用机制
- 批准号:82273586
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
An Integrated Catheter Dressing for Early Detection of Catheter-related Bloodstream Infections
用于早期检测导管相关血流感染的集成导管敷料
- 批准号:
10647072 - 财政年份:2023
- 资助金额:
$ 86.09万 - 项目类别:
Investigating phage therapy for the treatment of urinary tract infections
研究噬菌体疗法治疗尿路感染
- 批准号:
10677257 - 财政年份:2023
- 资助金额:
$ 86.09万 - 项目类别:
Investigating phage therapy for the treatment of urinary tract infections
研究噬菌体疗法治疗尿路感染
- 批准号:
10677257 - 财政年份:2023
- 资助金额:
$ 86.09万 - 项目类别:
“Protection from MRSA lethality by inhibiting LXRα phosphorylation”
– 通过抑制 LXRα 磷酸化来防止 MRSA 致死 –
- 批准号:
10681027 - 财政年份:2023
- 资助金额:
$ 86.09万 - 项目类别:
The role of master regulator NtrC in amyloid fibril dependent pathogenic traits of Pseudomonas aeruginosa
主调节因子 NtrC 在铜绿假单胞菌淀粉样原纤维依赖性致病性状中的作用
- 批准号:
10652868 - 财政年份:2023
- 资助金额:
$ 86.09万 - 项目类别: