Measuring and Predicting Appropriate Antibiotic Use to Combat Resistant Bacteria
测量和预测对抗耐药细菌的适当抗生素使用
基本信息
- 批准号:10720073
- 负责人:
- 金额:$ 79.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:AccountingAdverse effectsAgreementAntibiotic ResistanceAntibiotic susceptibilityAntibioticsBacteriaBacterial Antibiotic ResistanceBacterial InfectionsBacteriuriaCenters for Disease Control and Prevention (U.S.)Cessation of lifeClinicalClinical DataClinical Decision Support SystemsClinical MicrobiologyClinical TrialsCollaborationsCollectionCombating Antibiotic Resistant BacteriaCommunitiesComputersConsultationsDataDatabasesDiagnosticElectronic Health RecordElectronicsEvaluationFAIR principlesFeedbackGuidelinesHealthHealth Care CostsHospitalizationHumanIndividualInfectionLearningMachine LearningManualsMeasuresMethodsModelingNatural Language ProcessingOutcome MeasurePatientsPatternPhenotypePredispositionProcessProspective StudiesReal-Time SystemsRecommendationReference StandardsReproducibilityResearchResistanceRiskSelection BiasSiteSpecificitySymptomsSystems IntegrationTest ResultTestingTimeTrainingTranslatingUrinary tract infectionUrineValidationWorkantimicrobial resistant infectionapplication programming interfaceautomated algorithmbacterial resistanceclinical decision supportcombatcostdata harmonizationdata sharingdata standardselectronic data sharingelectronic medical record systemexperienceimprovedinnovationmachine learning methodmachine learning modelmicrobialmodel developmentnovelpersonalized predictionsphenotyping algorithmpoint of carepredictive modelingprospectiveprototyperoutine carestatistical learningstatisticstooltreatment risk
项目摘要
Project Summary: Measuring and Predicting Appropriate Antibiotic Use to Combat Resistant Bacteria
Antimicrobial resistant infections already cause over 2.8 million illnesses and 24,000 deaths per year in
the US alone. The Centers for Disease Control and Prevention (CDC) identify antibiotic prescribing
stewardship as the most important action to slow resistant infections.
Our objective is to produce the methods for clinical decision support systems to reduce both over and
under use of broad-spectrum antibiotics. We will test novel methods to measure and predict better antibiotic
choices on urinary tract infections (UTIs), the most common human bacterial infection that accounts for 25-
50% of antibiotic prescriptions with resistance already exceeding 20% for common antibiotics.
The key challenge is that prescriptions for antibiotics are almost always guesses before definitive test
results are available. This actionable, arbitrary, and ascertainable process where an important decision
(antibiotic prescribing) depends on humans predicting a verifiable result (diagnostic culture results) is ideally
suited for innovative machine learning that can produce Personalized Antibiograms that predict antibiotic
susceptibility for individuals based on patterns learned from large collections of prior examples.
Major scientific barriers to progress in combating antibiotic resistant bacteria include the limited
personalization of conventional tools for prescribing guidance, overly optimistic retrospective evaluations of
predictive models, and the lack of measures for effective diagnostic antibiotic prescribing decisions. With the
combined expertise of our multi-site team (Stanford, UT Southwestern, Harvard), we will overcome these
barriers and achieve the objectives of this proposal through the following aims:
(1a) Multi-site data harmonization and sharing of electronic health records for suspected UTIs
(1b) Develop and validate Personalized Antibiogram prediction models for microbial culture results
(2) Prospective validation of antibiogram models with real-time electronic health record integration
(3) Develop and validate automated methods for electronic phenotyping UTIs
(4) Develop and validate a measure of antibiotic appropriateness and desirability
项目摘要:测量和预测适当的抗生素使用以对抗抗性细菌
抗菌素抗性感染每年已经导致超过280万疾病和24,000人死亡
美国一个人。疾病控制与预防中心(CDC)确定了抗生素处方
管理是缓慢抗性感染的最重要动作。
我们的目标是生产临床决策支持系统的方法,以减少过度和
在使用广谱抗生素的情况下。我们将测试新方法,以测量和预测更好的抗生素
尿路感染的选择(UTI),这是最常见的人类细菌感染,占25--
普通抗生素的抗生素处方的50%已经超过20%。
关键挑战是抗生素的处方几乎总是在确定测试之前猜测
结果可用。这个可行,任意和可确定的过程,在其中一个重要的决定
(抗生素处方)取决于人类预测可验证的结果(诊断培养结果)是理想情况下
适用于创新的机器学习,可以产生个性化的抗生素图来预测抗生素
基于从大量先前示例中学到的模式的个人敏感性。
打击抗生素耐药细菌的进步的主要科学障碍包括有限
传统工具的个性化规定指导,过于乐观的回顾性评估
预测模型,以及缺乏有效诊断抗生素处方决策的措施。与
我们的多站点团队(斯坦福大学,犹他州西南部,哈佛)的联合专业知识,我们将克服这些
通过以下目的实现障碍并实现该提案的目标:
(1a)可疑UTI的电子健康记录的多站点数据协调和共享
(1B)开发和验证微生物培养结果的个性化抗体预测模型
(2)具有实时电子健康记录整合的抗体图模型的前瞻性验证
(3)开发和验证电子表型UTI的自动化方法
(4)开发和验证抗生素适当性和可取性的度量
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JONATHAN H. CHEN其他文献
JONATHAN H. CHEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JONATHAN H. CHEN', 18)}}的其他基金
Machine Learning Clinical Order Recommendations for Specialty Consultation Care
专科咨询护理的机器学习临床医嘱建议
- 批准号:
10265158 - 财政年份:2020
- 资助金额:
$ 79.45万 - 项目类别:
相似国自然基金
基因与家庭不利环境影响儿童反社会行为的表观遗传机制:一项追踪研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
不利地质结构对地下洞室群围岩地震响应影响研究
- 批准号:51009131
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
列车制动力对铁路桥梁的作用机理及最不利影响的研究
- 批准号:50178004
- 批准年份:2001
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Defining Clinically Relevant Phenotypes of PPI Non-Responders
定义 PPI 无反应者的临床相关表型
- 批准号:
8294216 - 财政年份:2012
- 资助金额:
$ 79.45万 - 项目类别:
Civamide Nasal Spray for the Treatment of Postherpetic Neuralgia of the Trigemina
西维酰胺鼻喷雾剂治疗三叉神经带状疱疹后神经痛
- 批准号:
8545911 - 财政年份:2012
- 资助金额:
$ 79.45万 - 项目类别:
Defining Clinically Relevant Phenotypes of PPI Non-Responders
定义 PPI 无反应者的临床相关表型
- 批准号:
8451889 - 财政年份:2012
- 资助金额:
$ 79.45万 - 项目类别:
Defining Clinically Relevant Phenotypes of PPI Non-Responders
定义 PPI 无反应者的临床相关表型
- 批准号:
8637997 - 财政年份:2012
- 资助金额:
$ 79.45万 - 项目类别:
Civamide Nasal Spray for the Treatment of Postherpetic Neuralgia of the Trigemina
西维酰胺鼻喷雾剂治疗三叉神经带状疱疹后神经痛
- 批准号:
8291589 - 财政年份:2012
- 资助金额:
$ 79.45万 - 项目类别: