A Single Entity Method for Controlled Nucleation and Crystal Growth
控制成核和晶体生长的单一实体方法
基本信息
- 批准号:10720470
- 负责人:
- 金额:$ 36.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdoptedAreaBindingBiological ProcessBiomedical ResearchCell NucleusChemicalsComplexCrystal FormationCrystallizationData CollectionDevelopmentDiffusionDisadvantagedDiseaseDrug DesignElectron MicroscopyEmbryoFeedbackFormulationFutureGoalsGrowthHabitsHydrogenIndividualInheritedInsulinIonsKineticsLipidsLiquid substanceLocationMagicMeasurementMembrane ProteinsMethodologyMethodsMonitorMuramidaseNamesNatureNeedlesNeutronsNoiseNucleic AcidsOptical MethodsOpticsPharmacologic SubstancePhasePhase TransitionPhysiologicalPlayPreparationProcessProgram DevelopmentProteinsProtonsQuantitative EvaluationsR-factorReproducibilityResearchResolutionRoentgen RaysRoleSamplingShapesSignal TransductionSiteSodium ChlorideSolventsSourceStructureSurfaceSystemTechniquesTemperatureThermodynamicsThinnessTimeTransport ProcessUncertaintyVariantX-Ray Crystallographyactive controlbiomacromoleculedesigndrug developmentimprovedinsightmacromoleculemigrationnanonanodevicenanoscaleoutcome predictionpredictive signatureprogramsprototypereal time monitoringsuccesstechnology developmenttooltwo-dimensionalvapor
项目摘要
The structures of biomacromolecules at atomic resolution (< 2.0-2.5 Å) are of enormous importance to
understand their physiological functions and roles in diseases. An exemplary critical need of high atomic
resolution is to resolve the location of proton/hydrogen which plays vital roles in various biological processes.
Deuteration renders neutron scattering techniques unique advantages in high contrast (signal/background) to
locate D/H. Like X-ray crystallography which has contributed majority of known biomolecule structures, high
quality single crystals are the prerequisites for both X-ray and neutron data collection. It is worth mentioning that
despite the recent progresses in electron microscopy techniques, true atomic resolution remains a formidable
challenge to achieve. Lower resolution structures are associated with ambiguity and could mislead basic
biomedical research as well as drug design/development applications. With the understanding on the
fundamental limitations and technical hurdles associated with currently adopted ensemble-based methods, we
propose to develop a single-entity method (named NanoAC) which will offer unprecedented capability to
synthesize crystals one at a time, under real-time monitoring and with predictive crystal quality. A single nanotip
will be employed to spatially confine supersaturation as the sole nucleation site. Electroanalytical and optical
methods will monitor the whole crystallization process in real-time to capture quantitative signatures for the
nucleation and crystal growth at single entity resolutions. Those signatures will enable active controls in kinetic
transitions, and be quantitatively correlated with its diffraction quality and/or crystal habits. The insights will inform
crystal synthesis such that nucleation kinetics and growth rates of each individual crystal will be finetune to
improve crystal quality and to tune crystal size/habits. Prototype soluble proteins, nucleic acids and membrane
proteins will be used as defined in this early-stage technology development program. The new toolbox, once
established, will provide paradigm-shift capabilities to improve the crystal quality in diffraction and size/habit
controls, to tackle challenging material systems currently not-crystallizable, and also feature high efficiency in
time and/or materials. The overarching goal will be pursued through three interrelated aims. Aim 1 will establish
real-time monitoring signatures for the generalization of NanoAC to crystallize soluble biomacromolecules and
complexes. Aim 2 will correlate diffraction quality and crystal habits with monitoring signatures. Aim 3 will further
develop single nanopipettes as ‘magic wand’ to crystallize membrane proteins.
原子分辨率(<2.0-2.5Å)在原子分辨率上的生物乳清分子的结构至关重要
了解他们的身体功能和在疾病中的作用。高原子的示例性临界需求
解决方案是解决在各种生物过程中起着至关重要的作用的质子/氢的位置。
侵蚀使中子散射技术在高对比度(信号/背景)中具有独特的优势
找到D/H。像X射线晶体学,贡献了大多数已知的生物分子结构,高
优质的单晶是X射线和中子数据收集的先决条件。值得一提的
尽管最近的电子显微镜技术取得了进展,但真原子分辨率仍然很强大
挑战要实现。较低的分辨率结构与歧义有关,可能误导基本
生物医学研究以及药物设计/开发应用。有了对
与当前采用的基于合奏的方法相关的基本限制和技术障碍,我们
提出开发单一实体方法(名为nanoac)的建议,该方法将提供前所未有的能力
在实时监测和预测晶体质量下,一次合成一个晶体。单个纳米
将在空间上将其作为唯一的核部位进行空间限制。电分析和光学
方法将实时监视整个结晶过程,以捕获用于的定量特征
单实体分辨率的成核和晶体生长。这些签名将在动力学中实现主动控制
过渡,并与其衍射质量和/或晶体习惯定量相关。见解将告知
晶体合成使每个单个晶体的成核动力学和生长速率将是未来的
提高晶体质量并调整晶体尺寸/习惯。原型固体蛋白,核酸和膜
蛋白质将按照该早期技术开发计划的定义使用。新工具箱一次
建立的,将提供范式移位能力,以提高衍射和尺寸/习惯的晶体质量
控件,以应对目前无法结晶的挑战材料系统,并且还具有很高的效率
时间和/或材料。总体目标将通过三个相互关联的目标实现。 AIM 1将建立
实时监测特征,以概括纳米AC,以使固体生物大分子和
复合物。 AIM 2将将衍射质量和晶体习惯与监测特征相关联。 AIM 3将进一步
开发单个纳米夹作为“魔杖”,以使膜蛋白结晶。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gangli Wang其他文献
Gangli Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Unlocking whole brain, layer-specific functional connectivity with 3D VAPER fMRI
通过 3D VAPER fMRI 解锁全脑、特定层的功能连接
- 批准号:
10643636 - 财政年份:2023
- 资助金额:
$ 36.45万 - 项目类别:
Alpha-emitter Imaging for Dosimetry and Treatment Planning
用于剂量测定和治疗计划的阿尔法发射体成像
- 批准号:
10713710 - 财政年份:2023
- 资助金额:
$ 36.45万 - 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10707830 - 财政年份:2023
- 资助金额:
$ 36.45万 - 项目类别:
Robust Precision Mapping of Cortical and Subcortical Brain Metabolic Signatures in AD
AD 中大脑皮层和皮层下代谢特征的稳健精确绘图
- 批准号:
10746348 - 财政年份:2023
- 资助金额:
$ 36.45万 - 项目类别: