Bayesian Mortality Estimation from Disparate Data Sources
来自不同数据源的贝叶斯死亡率估计
基本信息
- 批准号:10717177
- 负责人:
- 金额:$ 32.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-06 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Project Summary: The goal of the proposal is to develop a Bayesian statistical framework for mortality estimation
from disparate data sources. Using this framework we will produce a suite of principled methods to be used in
those situations in which vital registration data are lacking. We will emphasize efficient implementations that
can be used by researchers in low- and middle-income countries (LMICs), who may have limited computing
resources. In Aim 1, we will develop guidelines on a general statistical framework for mortality estimation. Aim 2
will focus on subnational child mortality with particular emphasis on the under-5 mortality rate (U5MR), which is
a key indicator of the health of a population, and the neonatal mortality rate (NMR). Excess mortality estimation
during the Covid-19 pandemic, by month, at the country level, will be the subject of Aim 3. We will disseminate
results widely and provide software and training in the developed methods.
We will produce yearly estimates of U5MR and NMR at the geographical level at which health decisions are
made. To achieve this goal, household survey, VR and census data must be combined in a coherent way. Census
data on child mortality typically provide summary birth history (SBH) data, which consist of mother's age along
with the number of children born and the number who died, but without the times at which those events occurred.
We will develop a framework for combining the different data sources, which will entail dealing with the design
issues in the household survey, accounting for unknown birth and death times in the SBH data, and estimating the
completeness of the VR data (births and deaths). We will also incorporate demographic information via a form
of Bayesian benchmarking. Effective and appropriate use of the models will require rigorous model assessment,
careful interpretation of results and meaningful and informative graphical summaries.
We will develop robust models to evaluate the excess mortality, i.e., the difference between the deaths ob-
served in the pandemic and those expected if the pandemic had not occurred. We will model the expected deaths,
and incorporate the uncertainty in this endeavor in the excess mortality calculation. Completeness of mortality
counts, that is, under-reporting and delays in reporting, will also be considered. For countries who do not report
deaths in the pandemic, we must predict the mortality count using available country-level covariate data, and we
will adopt flexible yet interpretable regression forms, and acknowledge uncertainty in the covariate data.
We will produce user-friendly software for the methods, along with vignettes and training materials, including
short courses. The endpoint is to have software that can be used by researchers in LMICs. All aims will be
informed by the collaborative team's close links with the United Nations Inter-agency Group for Child Mortality
Estimation (for the subnational child mortality aim) and the World Health Organization Division of Data, Analytics
and Delivery for Impact (for the excess mortality aim). Together we will develop methods to highlight disparities
and inform interventions.
项目摘要:该提案的目的是为死亡率估算开发贝叶斯统计框架
来自不同的数据源。使用此框架,我们将生产一套主要的方法
缺乏重要的注册数据的情况。我们将强调有效的实现
低收入国家(LMIC)的研究人员可以使用,计算机可能有限
资源。在AIM 1中,我们将制定有关死亡率估算的一般统计框架的准则。目标2
将重点关注次国儿童死亡率,特别着重于5岁以下死亡率(U5MR)
人口健康的关键指标和新生儿死亡率(NMR)。过多的死亡率估计
在Covid-19-19大流行期间,按月在国家一级将成为AIM 3的主题。我们将传播
结果广泛,并在开发方法中提供软件和培训。
我们将在健康决策的地理层面上对U5MR和NMR的年度估算
制成。为了实现这一目标,家庭调查,VR和人口普查数据必须以连贯的方式合并。人口普查
有关儿童死亡率的数据通常提供摘要出生历史(SBH)数据,该数据包括母亲的年龄
随着孩子的数量和死亡的人数,但没有发生这些事件的时间。
我们将开发一个结合不同数据源的框架,这将需要处理设计
家庭调查中的问题,占SBH数据中未知的出生和死亡时间,并估算
VR数据的完整性(出生和死亡)。我们还将通过表格合并人口信息
贝叶斯基准测试。有效且适当使用模型将需要严格的模型评估,
仔细解释结果以及有意义且内容丰富的图形摘要。
我们将开发强大的模型来评估过剩的死亡率,即死亡人数之间的差异
如果没有发生大流行,则在大流行中服役。我们将建模预期的死亡,
并将这项工作的不确定性纳入过多的死亡率计算中。死亡率的完整性
还将考虑计数,即报告不足和报告的延迟。对于不报告的国家
大流行中的死亡,我们必须使用可用国家 /地区的协变量数据来预测死亡率计数,我们
将采用灵活但可解释的回归形式,并承认协变量数据中的不确定性。
我们将生产用于方法的用户友好软件,以及小插曲和培训材料,包括
短课程。终点是拥有可以在LMIC中使用的软件。所有目标都是
由合作团队与联合国儿童死亡人际机构间的密切联系所告知
估计(针对次国儿童死亡率目标)和世界卫生组织数据部,分析
和撞击的交付(对于过剩的死亡率目标)。我们将共同开发突出显示分布的方法
并告知干预措施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
JONATHAN C WAKEFIE...的其他基金
SPATIO-TEMPORAL EPIDEMIOLOGY: METHODS AND APPLICATIONS
时空流行病学:方法和应用
- 批准号:91447209144720
- 财政年份:2005
- 资助金额:$ 32.31万$ 32.31万
- 项目类别:
Spatio-Temporal Epidemiology: Methods and Applications
时空流行病学:方法与应用
- 批准号:72694207269420
- 财政年份:2005
- 资助金额:$ 32.31万$ 32.31万
- 项目类别:
Spatio-Temporal Epidemiology: Methods and Applications
时空流行病学:方法与应用
- 批准号:71259637125963
- 财政年份:2005
- 资助金额:$ 32.31万$ 32.31万
- 项目类别:
Spatio-Temporal Epidemiology: Methods and Applications
时空流行病学:方法与应用
- 批准号:74870827487082
- 财政年份:2005
- 资助金额:$ 32.31万$ 32.31万
- 项目类别:
SPATIO-TEMPORAL EPIDEMIOLOGY: METHODS AND APPLICATIONS
时空流行病学:方法和应用
- 批准号:87585738758573
- 财政年份:2005
- 资助金额:$ 32.31万$ 32.31万
- 项目类别:
Spatio-Temporal Epidemiology: Methods and Applications
时空流行病学:方法与应用
- 批准号:69277046927704
- 财政年份:2005
- 资助金额:$ 32.31万$ 32.31万
- 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Cafe Move: A Novel Program for Prevention of Age-Related Physical Frailty
Cafe Move:预防与年龄相关的身体虚弱的新计划
- 批准号:1086196010861960
- 财政年份:2023
- 资助金额:$ 32.31万$ 32.31万
- 项目类别:
Morphologic and Kinematic Adaptations of the Subtalar Joint after Ankle Fusion Surgery in Patients with Varus-type Ankle Osteoarthritis
内翻型踝骨关节炎患者踝关节融合手术后距下关节的形态和运动学适应
- 批准号:1072581110725811
- 财政年份:2023
- 资助金额:$ 32.31万$ 32.31万
- 项目类别:
Informing alcohol policy: The impact of evidence-based alcohol warnings on consumption
告知酒精政策:基于证据的酒精警告对消费的影响
- 批准号:1056512010565120
- 财政年份:2023
- 资助金额:$ 32.31万$ 32.31万
- 项目类别:
Developing a regionally representative risk assessment tool to identify men at highest risk of HIV acquisition in sub-Saharan Africa
开发具有区域代表性的风险评估工具,以确定撒哈拉以南非洲地区感染艾滋病毒风险最高的男性
- 批准号:1076264510762645
- 财政年份:2023
- 资助金额:$ 32.31万$ 32.31万
- 项目类别:
Structural and functional studies of YbtPQ for fighting bacterial infections
YbtPQ 对抗细菌感染的结构和功能研究
- 批准号:1064488910644889
- 财政年份:2023
- 资助金额:$ 32.31万$ 32.31万
- 项目类别: