High-throughput discovery of disease-associated ion channel variants
高通量发现疾病相关离子通道变异
基本信息
- 批准号:10712437
- 负责人:
- 金额:$ 43.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-15 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAffectAmericanBiologyCell surfaceCellsChargeClassificationClinicalDataData SetDiseaseEffectivenessEnvironmentEpilepsyGenesGenomic medicineHealthHigh-Throughput Nucleotide SequencingHomeostasisHomologous GeneHumanIn VitroIon ChannelIon Channel GatingIonsLearningLibrariesLigandsLinkMeasuresMedical GeneticsMembrane LipidsMendelian disorderMutagenesisMutationMutation AnalysisPathogenicityPatientsPhenotypePlayProteinsReactionRoleTissuesVariantWorkbiobankbody systemcohortdisease phenotypeexperimental studygamma-Aminobutyric Acidgenetic analysisgenetic testinggenetic variantgenome sequencingmedical schoolsmutation screeningnovelpatch clampphenotypic dataprotein functionprotein structurereceptortraffickingvariant of unknown significance
项目摘要
PROJECT SUMMARY
Ion channels pass charged ions through lipid membranes in a regulated manner. Ion channels
play major roles in regulating electrically excitable tissues, sensing and responding to the
environment, and maintaining cell homeostasis. Over 70 ion channels have been linked to Mendelian
“channelopathy” disorders, affecting a diverse set of organ systems. As genetic testing and genomic
medicine become prominent, an important challenge is to understand the spectrum of which
mutations in ion channel genes cause disease. Unfortunately, a large fraction of variants are currently
annotated as “Variants of Uncertain Significance,” which limits the effectiveness and potential of
genomic medicine.
This proposal seeks to decipher which variants in channelopathy genes cause disease. We will
first use large biobank datasets with linked genome sequencing and phenotype data. We will examine
associations between genetic variants in 76 channelopathy genes and relevant disease phenotypes.
Using control pathogenic variants, we will first determine which gene-phenotype pairs are associated
in biobank datasets, then discover novel candidate disease-associated variants that are present in
carriers with relevant disease phenotypes. Next, we will use high-throughput automated patch
clamping to study hundreds of variants in ion channel genes. Our initial focus will be 5 key ion
channel genes that span a range of ion types and organ systems, as well as selected variants from
the biobank genetic analyses. Next, we will perform deep mutational scans (a comprehensive
mutational study) of every mutation in selected ion channel genes, starting with GABRA1, a ligand-
gated ion channel gene (receptor) involved in GABA sensing and linked to seizure disorders. We will
generate all possible mutations with degenerate mutagenesis reactions, integrate the mutation library
into cells, then measure each mutation's impact on cell surface trafficking and channel function using
high-throughput sequencing. Finally, we will integrate these patient and in vitro functional datasets to
learn fundamental features of ion channel biology and disease. Through an analysis of the 2D and 3D
protein structures, we will decipher protein mutational hotspots. From an analysis of mutational
impacts from homologous genes I will determine whether mutation information can be ported to
homologous genes. Finally, we will integrate variant data into the American College of Medical
Genetics classification framework to clinically reclassify variants. Overall, these experiments have
great potential to help resolve the VUS problem for ion channels and decipher novel ion channel
biology.
项目概要
离子通道以受调节的方式使带电离子穿过脂质膜。
在调节电兴奋组织、感知和响应方面发挥着重要作用
超过 70 个离子通道与孟德尔相关。
“通道病”疾病,影响多种器官系统,如基因检测和基因组。
医学变得越来越突出,一个重要的挑战是了解其范围
不幸的是,目前大部分变异都是离子通道基因突变引起的。
注释为“不确定意义的变体”,这限制了
基因组医学。
该提案旨在破译通道病基因的哪些变异会导致疾病。
首先使用具有关联基因组测序和表型数据的大型生物库数据集。
76 个通道病基因的遗传变异与相关疾病表型之间的关联。
使用对照致病变异,我们将首先确定哪些基因-表型对相关
在生物库数据集中,然后发现新的候选疾病相关变异
接下来,我们将使用高通量自动化补丁。
我们最初的重点是 5 个关键离子。
跨越一系列离子类型和器官系统的通道基因,以及从中选择的变体
接下来,我们将进行深度突变扫描(全面的突变扫描)。
突变研究)对所选离子通道基因中的每个突变进行研究,从 GABRA1(一种配体)开始
门控离子通道基因(受体)参与 GABA 传感并与癫痫症相关。
通过简并诱变反应生成所有可能的突变,整合突变库
进入细胞,然后使用以下方法测量每个突变对细胞表面运输和通道功能的影响
最后,我们将整合这些患者和体外功能数据集。
通过 2D 和 3D 分析了解离子通道生物学和疾病的基本特征。
蛋白质结构,我们将从突变分析中破译蛋白质突变热点。
同源基因的影响我将确定是否可以将突变信息移植到
最后,我们将把变异数据整合到美国医学院。
临床上对变异进行重新分类的遗传学分类框架总体而言,这些实验已经完成。
帮助解决离子通道的 VUS 问题和破译新型离子通道的巨大潜力
生物学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew M. Glazer其他文献
Andrew M. Glazer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew M. Glazer', 18)}}的其他基金
A pipeline for identifying disease-causing variants in transmembrane proteins
识别跨膜蛋白致病变异的管道
- 批准号:
10599263 - 财政年份:2022
- 资助金额:
$ 43.75万 - 项目类别:
A pipeline for identifying disease-causing variants in transmembrane proteins
识别跨膜蛋白致病变异的管道
- 批准号:
10583654 - 财政年份:2022
- 资助金额:
$ 43.75万 - 项目类别:
High-throughput Discovery of Pathogenic Cardiac Sodium Channel Variants
高通量发现致病性心脏钠通道变异体
- 批准号:
9329104 - 财政年份:2017
- 资助金额:
$ 43.75万 - 项目类别:
High-throughput Discovery of Pathogenic Cardiac Sodium Channel Variants
高通量发现致病性心脏钠通道变异体
- 批准号:
9762228 - 财政年份:2017
- 资助金额:
$ 43.75万 - 项目类别:
相似国自然基金
干旱内陆河高含沙河床对季节性河流入渗的影响机制
- 批准号:52379031
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
沿纬度梯度冠层结构多样性变化对森林生产力的影响
- 批准号:32371610
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
开放与二元结构下的中国工业化:对增长与分配的影响机制研究
- 批准号:72373005
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
基于MF和HPLC-ICP-MS监测蛋白冠形成与转化研究稀土掺杂上转换纳米颗粒对凝血平衡的影响机制
- 批准号:82360655
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
高寒草灌植被冠层与根系结构对三维土壤水分动态的影响研究
- 批准号:42301019
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 43.75万 - 项目类别:
Impact of Mitochondrial Lipidomic Dynamics and its Interaction with APOE Isoforms on Brain Aging and Alzheimers Disease
线粒体脂质组动力学及其与 APOE 亚型的相互作用对脑衰老和阿尔茨海默病的影响
- 批准号:
10645610 - 财政年份:2023
- 资助金额:
$ 43.75万 - 项目类别:
Full Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
完整项目 1:MICAL 依赖性胰腺癌细胞迁移的定义机制
- 批准号:
10762273 - 财政年份:2023
- 资助金额:
$ 43.75万 - 项目类别:
Nanowired humam cardiac organoid derived exosomes for heart repair
纳米线人类心脏类器官衍生的外泌体用于心脏修复
- 批准号:
10639040 - 财政年份:2023
- 资助金额:
$ 43.75万 - 项目类别:
Robust Precision Mapping of Cortical and Subcortical Brain Metabolic Signatures in AD
AD 中大脑皮层和皮层下代谢特征的稳健精确绘图
- 批准号:
10746348 - 财政年份:2023
- 资助金额:
$ 43.75万 - 项目类别: