Structural and mechanistic studies of cap-independent genome translation in (+)-strand RNA viruses
( )链RNA病毒中帽独立基因组翻译的结构和机制研究
基本信息
- 批准号:10713117
- 负责人:
- 金额:$ 34.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-10 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdoptedAffinityAnimal DiseasesBindingBinding SitesCactaceaeCardiovirusCellsComplexCoxsackie VirusesCrystallizationDataDevelopmentDistantEnhancersEtiologyFab ImmunoglobulinsFamilyGenomeGoalsHepatitis A VirusHumanInternal Ribosome Entry SiteKnowledgeMessenger RNAMolecular ChaperonesOutcomes ResearchParentsPeptide Initiation FactorsPlant DiseasesPostdoctoral FellowProcessRNARNA ProbesRNA VirusesRNA-targeting therapyResolutionRibosomesShapesStructureTechnologyTombusviridaeTombusvirusTranslation InitiationTranslationsViralVirusVisualizationWorkX-Ray Crystallographyglobal healthhuman diseaseinsightpandemic diseasepathogenrecruitthree dimensional structureviral RNA
项目摘要
Project Summary
Our main goal is to understand how internal ribosome entry sites (IRESs) and 3' cap-independent translation
enhancers (3'CITEs) promote cap-independent translation of genomes in (+)-strand RNA viruses. Despite highly
diverse sequences and predicted secondary structures, IRESs and 3ʹCITEs from evolutionarily distant viruses
recruit the same components from the host to initiate genome translation. Structural information for viral IRESs
that bind directly to the ribosome is limited and understanding of 3-dimensional (3D) structures and interactions
of IRESs and 3'CITEs that promote translation by other mechanisms is largely unknown. We will use X-ray
crystallography to determine the high-resolution crystal structures of these RNAs, focusing on the type I and type
II picornaviral IRESs and tombusvirus 3'CITEs due to their unique mechanisms of recruiting translation initiation
factors and the ribosomal subunits through a multistep, dynamic assembly process using modular RNA domains.
Our strategy employs Fab fragments as chaperones to crystallize and determine structures of RNAs and RNPs,
an extension of a technology that PI helped develop as a postdoc. Since moving to UMBC, we have obtained
crystals of coxsackievirus IRES domain V (an example of type I IRES) in a complex with Fab BL3-6 that diffracted
to 3.36 Å resolution (the first 3D structural information for type I IRESs). A partial structure of the dV contains a
3-way junction analogous to that observed in cardiovirus J-K and hepatitis A virus dV structures (PI's previous
work). Optimization of crystallization conditions to obtain high-resolution diffraction data, analysis of SAXS data
to access in-solution structural information, and purification of the human eIF4G HEAT-1 domain for binding
studies are underway. Recently, we solved the 2.9 Å resolution crystal structure of a T-shaped domain of saguaro
cactus virus 3ꞌCITE in a complex with Fab BL3-6 and characterized its binding with human eIF4E. Many viruses
within the tombusviridae family contain 3ꞌCITEs with similar domains, suggesting that these RNAs adopt a shared
topology to mimic mRNA 5ꞌ-cap for binding eIF4E. We are thus poised to determine the crystal structures of
different kinds of viral IRESs, 3'CITEs, and some cellular IRESs. The Fab approach has successfully solved the
crystal structures of several RNAs, but it has not been demonstrated for RNP complexes; the second goal is to
integrate this Fab-assisted technology to crystallize and determine the structures of RNP complexes. The third
goal is to create anti-RNA single-chain variable fragments (scFvs) as unique probes for RNA visualization to
facilitate the localization, tracking, and quantification of viral RNAs in host cells. We have obtained promising
preliminary data in this direction, including the development of three anti-RNA scFvs and their scFv-GFP fusions
based on the existing anti-RNA Fabs. The scFvs with and without GFP tags bind the cognate RNA targets with
affinities similar to their parent Fabs. When taken together, the proposed studies will provide deeper insights into
the mechanisms of cap-independent translation initiation in (+)-sense RNA viruses and unlock opportunities for
developing RNA-targeted therapeutics against these pathogens that cause human, animal, and plant diseases.
项目摘要
我们的主要目标是了解内部核糖体入口站点(IRESS)和3'无关的翻译
增强子(3'CITES)促进基因组中基因组的帽单位翻译(+) - 链RNA病毒。尽管很高
潜水序列和预测的二级结构,IRESS和3次来自进化的病毒
从宿主募集相同的组件以启动基因组翻译。病毒IRESS的结构信息
直接与核糖体结合的是有限的,并且了解3维(3D)结构和相互作用
通过其他机制促进翻译的IRESS和3'cites是未知的。我们将使用X射线
晶体学以确定这些RNA的高分辨率晶体结构,重点是I型和类型
II picornaviral iress和tombusvirus 3'cites,由于其独特的招募翻译启动机制
因子和核糖体亚基通过模块化RNA域的多步动组装过程。
我们的战略员工fab碎片作为伴侣,以结晶并确定RNA和RNP的结构,
PI帮助发展后的技术的扩展。自移居UMBC以来,我们已经获得了
coxsackievivirus ires域的晶体V(I型IRES的示例)与Fab Bl3-6的复合体中
到3.36Å分辨率(I型IRESS的第一个3D结构信息)。 DV的部分结构包含一个
3向连接类似于在心脏病毒J-K和肝炎A病毒DV结构中观察到的连接(PI的先前
工作)。优化结晶条件以获得高分辨率衍射数据,分析SAXS数据
访问解决方案的结构信息,并纯化人EIF4G热1结构域以结合
研究正在进行中。最近,我们解决了Saguaro T形域的2.9Å分辨率晶体结构
仙人掌病毒3游戏中引用了fab bl3-6的综合体,并将其与人EIF4E的结合进行了特征。许多病毒
在Tombusviridae家族中包含3个带有相似域的引用,这表明这些RNA采用了共享
拓扑模拟MRNA 5-CAP,用于结合EIF4E。因此,我们被中毒以确定
不同种类的病毒率,3'cites和一些细胞IRESS。工厂方法已成功解决了
几种RNA的晶体结构,但尚未证明RNP复合物。第二个目标是
集成了这种Fab辅助技术,以结晶并确定RNP复合物的结构。第三
目标是创建抗RNA单链可变片段(SCFV)作为RNA可视化的独特问题
促进宿主细胞中病毒RNA的定位,跟踪和定量。我们得到了诺言
在这个方向上的初步数据,包括开发三个抗RNA SCFV及其SCFV-GFP融合
基于现有的抗RNA Fabs。带有和不带GFP标签的SCFV与
类似于父母晶圆厂的亲和力。当一起,拟议的研究将为您提供更深入的见解
(+)中无关转换启动的机制 - 感知RNA病毒和解锁机会
针对引起人,动物和植物性疾病的这些病原体开发针对RNA靶向的疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deepak Koirala其他文献
Deepak Koirala的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Maglev LVAD with expandable stented inlet and anti-thrombotic coating to improve hemocompatibility
磁悬浮 LVAD 具有可扩张支架入口和抗血栓涂层,可改善血液相容性
- 批准号:
10736998 - 财政年份:2023
- 资助金额:
$ 34.34万 - 项目类别:
Structural and Functional Studies of lncRNAs in Gene Activation
lncRNA 在基因激活中的结构和功能研究
- 批准号:
10637407 - 财政年份:2023
- 资助金额:
$ 34.34万 - 项目类别:
Integration of biophysics and deep learning to understand species-specificity of fertilization and the rapid evolution of protein disorder
整合生物物理学和深度学习来了解受精的物种特异性和蛋白质紊乱的快速进化
- 批准号:
10714030 - 财政年份:2023
- 资助金额:
$ 34.34万 - 项目类别:
A platform to identify in vivo targets of covalent cancer drugs in 3D tissues
识别 3D 组织中共价癌症药物体内靶标的平台
- 批准号:
10714543 - 财政年份:2023
- 资助金额:
$ 34.34万 - 项目类别:
Multi-resolution Approaches to Modeling the 3D Structure, Delivery, and Replication of Viral Genomes
病毒基因组 3D 结构、传递和复制建模的多分辨率方法
- 批准号:
10626860 - 财政年份:2020
- 资助金额:
$ 34.34万 - 项目类别: