Tuberculosis in households with infectious cases in Kampala city: Harnessing health data science for new insights on TB transmission and treatment response (DS-IAFRICA-TB)

坎帕拉市感染病例家庭中的结核病:利用健康数据科学获得有关结核病传播和治疗反应的新见解 (DS-IAFRICA-TB)

基本信息

项目摘要

Abstract: Tuberculosis (TB) is prevalent in Uganda, and overlaps with an already high burden of HIV/TB coinfection. While almost all hospital-based TB cases in Kampala city, the capital of Uganda, have clear TB symptoms, 30% or more of the people with undiagnosed TB, identified through active case finding, are asymptomatic for TB; moreover, the host risk factors for TB in Kampala cannot be distinguished from risk factors associated with the environment. Complicating this further is the fact that anti-TB treatment failure rates are higher in Uganda by several order of magnitude, compared to global estimates (17% vs. 10%). These TB-specific challenges depict only a fraction of the complexity underlying the disease, especially in endemic settings with a high burden of HIV/AIDS. Data science methods, especially Artificial Intelligence (AI) and/or Machine Learning algorithms, can unravel such complexity and untangle factors of the host, pathogen and environment underlying TB, which hitherto, have been difficult to explain or predict with conventional approaches. In this proposal, we will harness health data science and elucidate factors underlying transmission of TB in a household, as well as anti-TB treatment failure. We will leverage the computational infrastructure at Makerere, and available demographic, clinical and laboratory data sets from TB patients and their contacts, and develop AI/Machine Learning algorithms that identify: (1) Patients at baseline (month 0) who would not sputum and/or culture convert at months 2 and 5, hence are at risk of failing TB treatment, (2) Contacts of index-TB cases who are at risk of developing household TB disease, as well as contacts who could be resistant to TB infection despite persistent and/or multiple exposure to M. tuberculosis in a household. Answering these aims provides the required evidence that data science methods are effective at early identification of potential TB cases and high-cost patients, hence contribute to halting of TB transmission in the community.
抽象的: 结核病(TB)在乌干达普遍存在,重叠,与HIV/TB共同感染的负担很高。尽管 乌干达首都坎帕拉市几乎所有基于医院的结核病病例都有明确的结核病症状,30%或 通过活跃的病例发现发现的更多未诊断结核病的人是无症状的TB。 此外,坎帕拉(Kampala)中结核病的宿主风险因素不能与与之相关的风险因素区分开 环境。进一步使这一事实复杂化的是,乌干达的抗TB治疗失败率较高 与全球估计相比,几个数量级(17%比10%)。这些特定于结核病的挑战描绘了 疾病的基础上只有一小部分,尤其是在高负担的地方性环境中 艾滋病毒/艾滋病。数据科学方法,尤其是人工智能(AI)和/或机器学习算法,可以 揭示宿主,病原体和环境的这种复杂性和解开特征的障碍因素, 迄今为止,很难用常规方法来解释或预测。在此提案中,我们将利用 健康数据科学和阐明家庭中结核病的基本因素以及抗结核 治疗失败。我们将利用Makerere的计算基础架构以及可用的人口统计 来自结核病患者及其联系的临床和实验室数据集,并开发AI/机器学习 识别的算法:(1)基线(第0个月)的患者不会在几个月内转换痰和/或培养 2和5,因此有可能失败的结核病治疗,(2)有可能开发的索引-TB案件的联系 家庭结核病以及尽管持续和/或可能对结核病感染有抵抗力的接触 家庭中多次暴露于结核分枝杆菌。回答这些目标提供了所需的证据 数据科学方法在早期鉴定潜在的结核病病例和高成本患者时有效,因此 有助于在社区中停止结核病传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

David Patrick Kateete其他文献

Phylogenetic groups and antimicrobial susceptibility patterns of uropathogenic Escherichia coli clinical isolates from patients at Mulago National Referral Hospital, Kampala, Uganda
乌干达坎帕拉穆拉戈国家转诊医院患者临床分离的尿路致病性大肠杆菌的系统发育群体和抗菌药物敏感性模式
  • DOI:
    10.12688/f1000research.20930.1
    10.12688/f1000research.20930.1
  • 发表时间:
    2019
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paul Katongole;Daniel Bulwadda Kisawuzi;Henry Kyobe Bbosa;David Patrick Kateete;Christine Florence Najjuka
    Paul Katongole;Daniel Bulwadda Kisawuzi;Henry Kyobe Bbosa;David Patrick Kateete;Christine Florence Najjuka
  • 通讯作者:
    Christine Florence Najjuka
    Christine Florence Najjuka
共 1 条
  • 1
前往

相似国自然基金

分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
  • 批准号:
    12371308
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
资源受限下集成学习算法设计与硬件实现研究
  • 批准号:
    62372198
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于物理信息神经网络的电磁场快速算法研究
  • 批准号:
    52377005
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
  • 批准号:
    12302257
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向高维不平衡数据的分类集成算法研究
  • 批准号:
    62306119
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Leveraging Molecular Technologies to Improve Diagnosis and Management of Pediatric Acute Respiratory Illness in Resource-Constrained Settings
利用分子技术改善资源有限环境中儿科急性呼吸系统疾病的诊断和管理
  • 批准号:
    10739603
    10739603
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
    $ 25万
  • 项目类别:
Aging Microbiome, Immunosenescence, and risk of Multi-drug Resistant Organism Colonization and Infection in the Nursing Home
疗养院微生物群老化、免疫衰老以及多重耐药微生物定植和感染的风险
  • 批准号:
    10584709
    10584709
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
    $ 25万
  • 项目类别:
Oral microbiome establishment and development of Latinx Children at the US-Mexico border
美墨边境拉丁裔儿童口腔微生物群的建立和发展
  • 批准号:
    10644580
    10644580
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
    $ 25万
  • 项目类别:
Impact of ocular microbiome, immune response and Chlamydiae on trachoma following MDA
MDA 后眼部微生物群、免疫反应和衣原体对沙眼的影响
  • 批准号:
    10646357
    10646357
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
    $ 25万
  • 项目类别:
Impact of ocular microbiome, immune response and Chlamydiae on trachoma following MDA
MDA 后眼部微生物组、免疫反应和衣原体对沙眼的影响
  • 批准号:
    10519058
    10519058
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
    $ 25万
  • 项目类别: