CHaracterizing Effects of Air Quality In Maternal, Newborn and Child Health: The CHEAQI-MNCH Research Project
表征空气质量对孕产妇、新生儿和儿童健康的影响:CHEAQI-MNCH 研究项目
基本信息
- 批准号:10713481
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-14 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAdverse effectsAfricaAfrica South of the SaharaAfricanAirAir PollutionAppointmentBiologicalChildChild HealthChildbirthClimateClinicalCohort StudiesCollaborationsCommunitiesComplexCountryCoupledDataData AnalysesData AnalyticsData ScienceData ScientistDerivation procedureDeteriorationDevelopmentEcosystemEnsureEnvironmental HealthEnvironmental PollutionEnvironmental Risk FactorEpidemiologyExposure toFoodFundingFutureGenerationsGoalsHealthHealth care facilityHeat Stress DisordersHeat WavesHumanIn SituIndividualIndustrializationIndustryInfantInstitutionInterventionInvestigationJointsKnowledgeLifeLinkLow Birth Weight InfantLow incomeMachine LearningMaternal HealthMaternal and Child HealthMeasurementMeasuresMichiganNamesOutcomePoliciesPollutionPopulationPopulation GrowthPostdoctoral FellowPovertyPre-EclampsiaPredispositionPregnancyPregnant WomenPremature BirthProxyResearchResearch PersonnelResearch Project GrantsResourcesRiskSMART healthSocioeconomic FactorsSpontaneous abortionSystemTechniquesTemperatureTestingTranslatingTranslationsUnited States National Institutes of HealthUniversitiesUrbanizationValidationVulnerable PopulationsWashingtonWaterZimbabweadaptive interventionadverse birth outcomesadverse outcomeair monitoringambient air pollutionburden of illnesscareerclimate changeclimate impactclimate-related healthcostdata repositorydoctoral studentexperiencehealth care availabilityimprovedinnovationinterestknowledge translationneonatal healthneonatepollutantprenatal exposureprogramspromote resilienceprospectiveremote sensingresilienceresponsesensorskillsstatistical and machine learningstillbirthtool
项目摘要
Air pollution is a leading contributor to the global disease burden, which is a crucial concern
as the air quality across sub-Saharan Africa significantly and rapidly deteriorates with
accelerated urbanization, industrialization, and population growth. The synergistic association
between heat waves and air pollution is expected to exacerbate with the changing climate,
which poses a crucial threat to the health of vulnerable populations in low-income settings.
Studies which indicate associations between maternal and prenatal exposure to
environmental pollution and adverse health outcomes, highlight the need for further
investigation in African populations, as such vulnerable subpopulations are not consistently
investigated. Pregnant women who are exposed to heat stress coupled with air pollution are
more susceptible to adverse birth outcomes including; miscarriages, stillbirth, preterm birth,
low birth weight, and preeclampsia. Developing appropriate health sector responses and
adaptive interventions relies on identifying these vulnerable populations along with their level
of environmental risk. Socio-economic factors such as poverty, food and water insecurity, and
limited access to healthcare facilities perpetuate vulnerability among these communities.
Impacts of pollution exposure over periods of increased temperatures are difficult to measure
and require refined data science and analytical approaches. The current poor networks of
ground sensors for measuring air quality, piecemeal approaches to quantifying associations
with adverse health outcomes and dearth of translation from evidence to intervention warrants
a paradigm shift in approach. To address the lack of understanding of the environmental risk
impacts on the changing epidemiology in sub-Saharan Africa, the proposed research project
will aim to quantify the current and future impacts of air pollution on maternal and neonatal
health through innovative data science approaches such as machine learning, by accelerating
low-cost characterization of pollution exposure data while understanding its associations with
adverse outcomes related to pregnancy, childbirth and early life. Further to this we will develop
adaptive interventions that will help pregnant women and their children counter the risk
imposed by exposure to pollutants and build resilience against the high odds of adverse health
outcomes. The CHEAQI-MNCH project will provide an opportunity for emerging data scientists
and researchers in Africa to engage, collaborate and develop transferrable skills, while
contributing to a continental resource center for knowledge translation and dissemination
within the fields of climate and health.
空气污染是全球疾病负担的主要因素,这是至关重要的关注点
随着撒哈拉以南非洲地区的空气质量显着,迅速恶化
加速城市化,工业化和人口增长。协同协会
在热浪和空气污染之间有望随着气候变化而加剧,
这对低收入环境中脆弱人群的健康构成了至关重要的威胁。
表明孕产妇和产前暴露之间关联的研究
环境污染和不利的健康结果,强调了进一步的需求
非洲人口的调查,因为这种脆弱的亚群并不始终如一
调查。接触热应激的孕妇加上空气污染
更容易受到不利的出生结果的影响。流产,死产,早产,
低出生体重和先兆子痫。制定适当的卫生部门的反应和
自适应干预措施依赖于确定这些脆弱人群及其水平
环境风险。社会经济因素,例如贫困,食物和水不安全感,以及
在这些社区中,获得医疗机构的机会有限。
在温度升高时期,污染暴露的影响很难衡量
并需要精致的数据科学和分析方法。当前的贫困网络的网络
测量空气质量的零碎方法的接地传感器来量化关联
从不良的健康结果和从证据到干预令的翻译缺乏
进近的范式转变。解决对环境风险的缺乏理解
拟议的研究项目对撒哈拉以南非洲的流行病学不断变化的影响
旨在量化空气污染对孕产妇和新生儿的当前和未来影响
通过创新的数据科学方法(例如机器学习,加速)健康
污染暴露数据的低成本表征,同时了解其与
与怀孕,分娩和早期生活有关的不利结果。除此之外,我们将发展
适应性干预措施将帮助孕妇及其子女应对风险
暴露于污染物并为不良健康的高几率增强弹性而施加
结果。 Cheaqi-Mnch项目将为新兴数据科学家提供机会
非洲的研究人员参与,协作和发展可转让技巧,而
为知识翻译和传播的大陆资源中心做出贡献
在气候和健康领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tamara Govindasamy其他文献
Tamara Govindasamy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Targeting Alcohol-Opioid Co-Use Among Young Adults Using a Novel MHealth Intervention
使用新型 MHealth 干预措施针对年轻人中酒精与阿片类药物的同时使用
- 批准号:
10456380 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Developing a novel disease-targeted anti-angiogenic therapy for CNV
开发针对 CNV 的新型疾病靶向抗血管生成疗法
- 批准号:
10726508 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Switching Individuals in Treatment for Opioid Use Disorder Who Smoke Cigarettes to the SREC
将接受阿片类药物使用障碍治疗且吸烟的个体转至 SREC
- 批准号:
10661301 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Augmenting Pharmacogenetics with Multi-Omics Data and Techniques to Predict Adverse Drug Reactions to NSAIDs
利用多组学数据和技术增强药物遗传学,预测 NSAID 的药物不良反应
- 批准号:
10748642 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别: