Shared Resource Core 2: Clinical Artificial Intelligence Core
共享资源核心2:临床人工智能核心
基本信息
- 批准号:10712296
- 负责人:
- 金额:$ 14.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-19 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:Academic TrainingAccelerationAddressAdoptionAlgorithmic AnalysisApacheArtificial IntelligenceArtificial Intelligence platformBiological AssayCancer BiologyCancer Research ProjectCharacteristicsClinicClinicalClinical DataCommunitiesCommunity Clinical Oncology ProgramComplexComputer softwareComputerized Medical RecordDataData AnalysesData CommonsData ScienceData Science CoreData SetEnsureGoalsHeterogeneityImageIndustryInformaticsInfrastructureIntelligenceInvestigationInvestmentsKnowledgeLate EffectsMalignant Childhood NeoplasmMalignant NeoplasmsMeasuresMedicalMedical ImagingMedicineMethodsModelingMolecularMultiomic DataNatural Language ProcessingNeuroblastomaPatientsPatternPhenotypePrediction of Radiation ResponsePreparationRadiationRadiation OncologyRadiation therapyReproducibilityResearchResearch Project GrantsResearch SupportResource SharingResourcesScientific Advances and AccomplishmentsSemanticsStandardizationTechnologyTextThe Cancer Imaging ArchiveToxic effectTraininganticancer researchartificial intelligence algorithmartificial intelligence methodcancer therapyclinical phenotypeclinical translationdata streamselectronic dataexperienceimaging biomarkerimaging probeimprovedmultiple omicsopen sourceprogramsquantitative imagingradiation during childhoodradiation resistanceradiation responseradiological imagingradiomicsresponsesynergismtooltreatment responsetumortumor heterogeneityusability
项目摘要
PROJECT SUMMARY
Artificial intelligence (AI) algorithms have the potential to fundamentally change medicine through their ability to
recognize complex patterns in medical data. The Clinical Artificial Intelligence and Imaging Core (AI Core)
is an essential shared resource that will support the Aims of the Harvard/UCSF ROBIN Research Projects to
enable large-scale analysis of granular clinical data, allowing non-invasive characterization of tumoral and
patient heterogeneity and a path towards clinical translation. This will be achieved through the following
Specific Aims: i) retrieve, curate, and annotate digitized clinical data to support quantitative analyses and
AI/informatics pipelines for the ROBIN Molecular Characterization Trial and Research Projects, which will
produce one of the most comprehensive datasets for DMG and neuroblastoma patients in existence for AI-
based data analysis, ii) develop and evaluate task-specific AI pipelines using our well-established data
preprocessing, AI-derived imaging biomarkers, and natural language processing (NLP) platforms for tumor
heterogeneity, radiation resistance/response, and toxicity characterization in accordance with the Research
Projects and Data Science Core, and iii) standardize and release AI/informatics methods across data types
and applications in ways that ensure transparency, reproducibility, and access to advance scientific knowledge
within the wider research field, as well as accelerate clinical translation to the pediatric radiation oncology
clinic. Achieving these aims will be possible through synergy with the molecular mechanistic analyses in the
Data Science Core, as well as with the ROBIN-NEST Cross-Training Core and Administrative Core to
disseminate our methods and provide training to the greater ROBIN Network and the scientific community.
This Core is led by pioneers in the field of AI analysis of medical imaging (PI: Aerts) and clinical text (PI:
Savova), with significant experience building open access platforms for medical AI applications. For imaging
analysis, we developed and maintain PyRadiomics, one of the world’s most widely used and highly cited
radiomics pipelines, developed with support of NCI’s investments in infrastructure and data, including the
Informatics Technology for Cancer Research (ITCR), Imaging Data Commons (IDC), and Quantitative Imaging
Network (QIN) programs. For clinical text, we have developed Apache cTakes(™), a leading open access
natural language processing platform for extracting medical, grammatical, and semantic information from
clinical texts, and DeepPhe, an open-source software for cancer clinical phenotyping, also supported by the
NCI’s ITCR program (PI: Savova). We will use and build on our open access methods and state-of-the art AI-
based phenotyping methods developed in these NCI projects to support the Harvard/UCSF ROBIN
investigators to incorporate fundamental clinical -omics data into their investigation of intratumoral
heterogeneity and predictors of radiation response and late effects.
项目概要
人工智能 (AI) 算法有潜力从根本上改变医学,因为它们能够
识别医疗数据中的复杂模式。临床人工智能和成像核心(AI 核心)
是一个重要的共享资源,将支持哈佛/加州大学旧金山分校罗宾研究项目的目标
能够对颗粒临床数据进行大规模分析,从而能够对肿瘤和肿瘤进行非侵入性表征
患者异质性和临床转化之路这将通过以下方式实现。
具体目标:i) 检索、整理和注释数字化临床数据以支持定量分析和
ROBIN 分子表征试验和研究项目的人工智能/信息学管道,这将
为 AI 生成现有最全面的 DMG 和神经母细胞瘤患者数据集之一
基于数据分析,ii) 使用我们完善的数据开发和评估特定任务的人工智能管道
用于肿瘤的预处理、人工智能衍生的成像生物标志物和自然语言处理 (NLP) 平台
根据研究的异质性、辐射抗性/响应和毒性特征
项目和数据科学核心,以及 iii) 标准化和发布跨数据类型的人工智能/信息学方法
以确保透明度、可重复性和获取先进科学知识的方式进行应用
在更广泛的研究领域内,并加速向儿科放射肿瘤学的临床转化
通过与分子力学分析的协同作用,可以实现这些目标。
数据科学核心,以及 ROBIN-NEST 交叉培训核心和管理核心
传播我们的方法并为更大的 ROBIN 网络和科学界提供培训。
该核心由医学影像人工智能分析(PI:Aerts)和临床文本(PI:Aerts)领域的先驱者领导。
Savova),拥有为医疗人工智能应用构建开放访问平台的丰富经验。
分析,我们开发并维护 PyRadiomics,这是世界上使用最广泛和引用率最高的工具之一
放射组学管道,在 NCI 基础设施和数据投资的支持下开发,包括
癌症研究信息技术 (ITCR)、成像数据共享 (IDC) 和定量成像
对于临床文本,我们开发了 Apache cTakes(™),这是一个领先的开放获取程序。
自然语言处理平台,用于从文本中提取医学、语法和语义信息
临床文本和 DeepPhe,一种用于癌症临床表型分析的开源软件,也得到了
NCI 的 ITCR 计划(PI:Savova)我们将使用并构建我们的开放获取方法和最先进的人工智能。
这些 NCI 项目中开发的基于表型分析方法来支持哈佛/加州大学旧金山分校 ROBIN
研究人员将基本的临床组学数据纳入肿瘤内的研究中
辐射反应和后期效应的异质性和预测因素。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hugo Aerts其他文献
Hugo Aerts的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hugo Aerts', 18)}}的其他基金
Quantitative Radiomics System Decoding the Tumor Phenotype
定量放射组学系统解码肿瘤表型
- 批准号:
8875289 - 财政年份:2015
- 资助金额:
$ 14.19万 - 项目类别:
Genotype and Imaging Phenotype Biomarkers in Lung Cancer
肺癌的基因型和影像表型生物标志物
- 批准号:
8799943 - 财政年份:2015
- 资助金额:
$ 14.19万 - 项目类别:
Quantitative Radiomics System Decoding the Tumor Phenotype
定量放射组学系统解码肿瘤表型
- 批准号:
9247166 - 财政年份:2015
- 资助金额:
$ 14.19万 - 项目类别:
相似国自然基金
高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
- 批准号:12305275
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
U型离散顺流火蔓延非稳态热输运机理与加速机制研究
- 批准号:52308532
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NOTCH3/HLF信号轴驱动平滑肌细胞表型转化加速半月板退变的机制研究
- 批准号:82372435
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
TWIST1介导的ITGBL1+肿瘤相关成纤维细胞转化加速结肠癌动态演化进程机制及其预防干预研究
- 批准号:82373112
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
- 批准号:82303925
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Center for Virtual Care Value and Equity (ViVE)
虚拟护理价值和公平中心 (ViVE)
- 批准号:
10621602 - 财政年份:2023
- 资助金额:
$ 14.19万 - 项目类别:
BiOengineering Research Education to AcceLerate Innovation in STEM
生物工程研究教育加速 STEM 创新
- 批准号:
10652133 - 财政年份:2023
- 资助金额:
$ 14.19万 - 项目类别:
AnVIL Clinical Environment for Innovation and Translation (ACE-IT)
AnVIL 创新与转化临床环境 (ACE-IT)
- 批准号:
10747551 - 财政年份:2023
- 资助金额:
$ 14.19万 - 项目类别:
Learning Precision Medicine for Rare Diseases Empowered by Knowledge-driven Data Mining
通过知识驱动的数据挖掘学习罕见疾病的精准医学
- 批准号:
10732934 - 财政年份:2023
- 资助金额:
$ 14.19万 - 项目类别: