Brain-region-specific humanized cortical interneuron mice
脑区域特异性人源化皮质中间神经元小鼠
基本信息
- 批准号:10735991
- 负责人:
- 金额:$ 66.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:AblationAddressAreaAstrocytesBehaviorBehavioralBehavioral AssayBiological ModelsBlood VesselsBrainBrain DiseasesBrain regionCell Culture TechniquesCentral Nervous SystemChimera organismComplexDataDevelopmentDiseaseDorsalDoseElectrodesElectrophysiology (science)EnvironmentFailureFutureGeneticGraft SurvivalHippocampusHistologicHumanImmunohistochemistryIn VitroInjectionsInterneuron functionInterneuronsMedialMethodsMicrogliaModelingMusNeuronsOligodendrogliaPathogenesisPatientsPhenotypePhysiologicalPlayPluripotent Stem CellsPopulationPrefrontal CortexQualifyingRegulationRodentRodent ModelRoleSchizophreniaSliceSourceSynapsesSystemTestingTherapeuticTitrationsTransplantationUntranslated RNAViral Vectorautism spectrum disordercell typecognitive functioncognitive taskcognitive testingdisease mechanisms studyexperimental studyhuman diseasehuman fetal brain tissuein vivoin vivo Modelinduced pluripotent stem cellneuropsychiatric disordernovelnovel therapeuticsoptogeneticsphysiologic modelrestorationrisk variantstem cells
项目摘要
Abstract
GABAergic cortical interneurons (cINs) play critical roles in balancing, synchronizing, and gating brain activity
by inhibiting other neurons. Their malfunction, especially those of medial ganglionic eminence (MGE)-derived
cINs, has been associated with various neurodevelopmental brain disorders, such as schizophrenia (SCZ) and
autism spectrum disorders (ASD). Considering the fact that the divergence between human brains and rodent
brains has resulted in the failure of many central nervous system (CNS) therapeutics validated in rodent
models, it is critical to study human neurons to better understand the mechanisms of these cIN-associated
brain disorders. Human fetal brain tissues are not accessible for mechanistic studies, but we have developed a
method to efficiently generate homogeneous populations of MGE-type human cINs from pluripotent stem cells
(PSCs) of healthy or diseased subjects. We have extensively characterized them and demonstrated their
authenticity and functionality, making it possible to study the converging functional consequences of complex
genetics in real patient neurons, which cannot be studied in mouse neurons due to a lack of conservation of
non-coding regions, where most of risk loci are present. However, in vitro cultured neurons lack other critical
components of the brain environment, such as astrocytes, oligodendrocytes, microglia and blood vessels,
which can significantly impact their function. There have been efforts to optimize in vitro culture systems to
better recapitulate in vivo physiological environments by adding other brain cellular components, but there are
still limitations as to how closely they can simulate in vivo situations. To resolve this issue, in our previous
study, we pioneered human neuron-mouse brain chimeras to study the function of human SCZ neurons in
physiological environments. Although we were able to successfully identify SCZ cIN-intrinsic connectivity
deficits in mouse brains, we were not able to analyze the impacts of grafted neurons on brain circuits and
behaviors due to the presence of healthy mouse neurons in the grafted mice. Thus, in this proposed study, we
will perform brain-region-specific cIN-ablation in NodScid gamma (NSG) mice, followed by the replacement of
ablated host cINs with human cINs to generate region-specific humanized cIN chimeras. Based on previous
studies, including ours, that show successful restoration of compromised mouse inhibition by grafted human
cINs, these mice will allow us to analyze the functional impacts of grafted human cINs on the brain circuits and
behaviors in physiological in vivo environments. This novel physiological model system will help us tease apart
cell-type- and brain-region-specific disease mechanisms for complex brain disorders, and aid in developing
novel therapeutics.
抽象的
GABA 能皮质中间神经元 (cIN) 在平衡、同步和门控大脑活动中发挥着关键作用
通过抑制其他神经元。它们的功能障碍,尤其是内侧神经节隆起 (MGE) 衍生的功能障碍
cINs 与各种神经发育性脑部疾病有关,例如精神分裂症 (SCZ) 和
自闭症谱系障碍(ASD)。考虑到人类大脑和啮齿动物大脑之间的差异
大脑导致许多在啮齿动物身上验证的中枢神经系统(CNS)疗法失败
模型中,研究人类神经元以更好地了解这些 cIN 相关的机制至关重要
脑部疾病。人类胎儿脑组织无法用于机制研究,但我们开发了一种
从多能干细胞中有效产生同质 MGE 型人类 cIN 群体的方法
健康或患病受试者的(PSC)。我们对它们进行了广泛的表征并展示了它们
真实性和功能性,使得研究复杂的聚合功能后果成为可能
真实患者神经元的遗传学,由于缺乏保守性而无法在小鼠神经元中进行研究
非编码区,其中存在大多数风险位点。然而,体外培养的神经元缺乏其他关键的
大脑环境的组成部分,例如星形胶质细胞、少突胶质细胞、小胶质细胞和血管,
这会显着影响它们的功能。人们一直在努力优化体外培养系统
通过添加其他脑细胞成分可以更好地重现体内生理环境,但也有
它们对体内情况的模拟程度仍然有限。为了解决这个问题,我们之前
研究中,我们开创了人类神经元-小鼠大脑嵌合体来研究人类 SCZ 神经元的功能
生理环境。尽管我们能够成功识别 SCZ cIN 内在连接
由于小鼠大脑存在缺陷,我们无法分析移植神经元对大脑回路的影响
由于移植小鼠中存在健康的小鼠神经元而导致的行为。因此,在这项拟议的研究中,我们
将在 NodScid gamma (NSG) 小鼠中进行大脑区域特异性 cIN 消融,然后替换
用人类 cIN 消除宿主 cIN,生成区域特异性人源化 cIN 嵌合体。基于之前的
包括我们在内的研究表明,移植的人类成功恢复了受损的小鼠抑制作用
cINs,这些小鼠将使我们能够分析移植的人类 cINs 对大脑回路的功能影响
体内生理环境中的行为。这种新颖的生理模型系统将帮助我们区分
复杂脑部疾病的细胞类型和脑区域特异性疾病机制,并有助于发展
新疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SANGMI CHUNG其他文献
SANGMI CHUNG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SANGMI CHUNG', 18)}}的其他基金
Common schizophrenia variants functioning in developmental human cortical interneurons
在发育中的人类皮质中间神经元中发挥作用的常见精神分裂症变异
- 批准号:
10735990 - 财政年份:2023
- 资助金额:
$ 66.05万 - 项目类别:
Stem Cell-Derived Developmental Human Cortical Interneurons to Treat Intractable Epilepsy
干细胞衍生的发育性人类皮质中间神经元治疗难治性癫痫
- 批准号:
10355921 - 财政年份:2021
- 资助金额:
$ 66.05万 - 项目类别:
iPSC derived human cortical interneurons as developmental model of Schizophrenia
iPSC 衍生的人类皮质中间神经元作为精神分裂症的发育模型
- 批准号:
8944687 - 财政年份:2015
- 资助金额:
$ 66.05万 - 项目类别:
Isolation and characterization of midbrain dopaminergic neuronal precursors
中脑多巴胺能神经元前体的分离和表征
- 批准号:
8356550 - 财政年份:2012
- 资助金额:
$ 66.05万 - 项目类别:
Isolation and characterization of midbrain dopaminergic neuronal precursors
中脑多巴胺能神经元前体的分离和表征
- 批准号:
8494704 - 财政年份:2012
- 资助金额:
$ 66.05万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Prototype development and validation of soft robotic sensor arrays for mapping cardiac arrhythmia
用于绘制心律失常的软机器人传感器阵列的原型开发和验证
- 批准号:
10722857 - 财政年份:2023
- 资助金额:
$ 66.05万 - 项目类别:
Genetic and molecular mechanisms of Xbp-1 mediated salivary gland development and differentiation
Xbp-1介导唾液腺发育和分化的遗传和分子机制
- 批准号:
10678146 - 财政年份:2023
- 资助金额:
$ 66.05万 - 项目类别:
Neural pathways for obesity development by AgRP neurons
AgRP 神经元导致肥胖发展的神经通路
- 批准号:
10681993 - 财政年份:2023
- 资助金额:
$ 66.05万 - 项目类别:
The role of the nigrothalamic pathway in opioid-driven behaviors
黑丘脑通路在阿片类药物驱动行为中的作用
- 批准号:
10730268 - 财政年份:2023
- 资助金额:
$ 66.05万 - 项目类别: