Rational optimization of combinatorial therapies for the treatment of rare cystic fibrosis variants
合理优化治疗罕见囊性纤维化变异的组合疗法
基本信息
- 批准号:10736732
- 负责人:
- 金额:$ 68.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAutophagocytosisBinding SitesBiochemicalBiogenesisCRISPR/Cas technologyCaucasiansCellsClassificationClinicalCluster AnalysisClustered Regularly Interspaced Short Palindromic RepeatsCombined Modality TherapyComputing MethodologiesCystic FibrosisCystic Fibrosis Transmembrane Conductance RegulatorDefectDelta F508 mutationDiseaseDrug CombinationsEligibility DeterminationEpithelial CellsExhibitsFDA approvedGeneticGenetic DiseasesGenetic VariationGenotypeGoalsHumanIn complete remissionInbred F344 RatsIndustry StandardInvestigationIon ChannelKnock-outLabelLinkMachine LearningMarketingMeasurementMeasuresMedicalMethodsModelingMolecular ChaperonesMutationNaturePatientsPersonsPharmaceutical PreparationsPharmacologyPopulationPropertyProteinsProteomicsRefractoryRegulator GenesResidual stateShapesStructural ModelsStructural defectSurveysSystemTechniquesTestingTherapeuticThyroid GlandValidationVariantWorkairway epitheliumcombinatorialcystic fibrosis patientsdrug discoverydrug efficacyfunctional restorationimprovedloss of function mutationmolecular modelingmolecular phenotypemonolayermutation screeningnew therapeutic targetnovelnovel strategiespersonalized interventionpharmacologicpredicting responseprotein structureproteostasisrare variantresponsesmall moleculetargeted treatmenttooltraitvariant of unknown significance
项目摘要
Abstract
Cystic fibrosis (CF) is a lethal genetic disease that currently affects ~100,000 people worldwide. CF is caused
by a spectrum of loss-of-function mutations that compromise the biogenesis and/ or function of the cystic fibrosis
transmembrane conductance regulator (CFTR) ion channel, most of which enhance its misfolding and
degradation. Recent drug discovery efforts have yielded a suite of approved small molecule “correctors” that
enhance the expression of misfolded CFTR variants and “potentiators” that restore conductance to CFTR
variants with defective gating. Combinations of these molecules have recently revolutionized the treatment of
the ~90% of CF patients bearing at least one copy of the well-studied ΔF508 CFTR variant, which is highly
penetrant among Caucasians. However, the efficacy of current combinatorial therapies varies widely among the
~10% of patients bearing diverse combinations of rare, uncharacterized CF variants with divergent
pharmacological properties (“theratype”). Efforts to expand the labels of current therapeutics and maximize the
number of treatable CF genotypes, in particular amongst non-white populations, are constrained by the large
number of CF variants and the limited throughput of current methods. Identifying rare CF variants that respond
to therapeutic cocktails is likely to become even more challenging as new correctors and/ or potentiators gain
approval. Addressing this challenge requires new techniques that enable efficient biochemical and/ or
pharmacological profiling of rare CF variants. In the following, we propose to address this challenge with a unique
fusion of emerging genetic, biochemical, and computational methods. We show how deep mutational scanning
(DMS) can be used to compare the effects of correctors on the expression of hundreds of variants in parallel.
Our preliminary findings provide an unprecedented glimpse of the divergent theratypes of CF variants while
identifying numerous variants with unique biochemical and/ or pharmacological properties. We first propose to
expand on these investigations in order to measure the response of the complete set of CFTR2 missense
variants to a panel of structurally diverse corrector molecules. We will then characterize the interactomes of
variants with distinct corrector responses to identify CFTR interactions that antagonize the effects of these small
molecules. We will then fuse CRISPR/ Cas9 technology with DMS to determine how these interactions impact
the spectrum of CF variant theratypes. Using state-of-the-art structural modeling approaches, we will then
identify structural defects in the CFTR protein that are associated with the formation of antagonistic interactions
and deviations in CFTR variant theratype. We will then utilize machine learning to classify CF variants based on
their observed pharmacological properties. Finally, we will assess the effects of approved correctors on the
functional properties of previously uncharacterized variants using industry-standard short-circuit current analysis
in Fischer Rat Thyroid and human airway epithelial cells. Together, these investigations will help expand the list
of treatable CF genotypes and provide new tools to optimize the targeting of CF drugs.
抽象的
囊性纤维化 (CF) 是一种致命的遗传性疾病,目前影响全球约 100,000 人。
通过一系列损害囊性纤维化的生物发生和/或功能的功能丧失突变
跨膜电导调节器(CFTR)离子通道,其中大部分增强其错误折叠和
最近的药物发现工作已经产生了一套经批准的小分子“校正剂”。
增强错误折叠的 CFTR 变体和恢复 CFTR 电导的“增强剂”的表达
这些分子的组合最近彻底改变了门控缺陷的治疗方法。
约 90% 的 CF 患者至少携带一份经过充分研究的 ΔF508 CFTR 变体,该变体高度
然而,当前组合疗法的疗效在不同人群中差异很大。
约 10% 的患者携带罕见、未表征的 CF 变异的不同组合,且具有不同的变异
药理学特性(“治疗类型”)。努力扩大当前治疗的标签并最大化
可治疗的 CF 基因型的数量,特别是在非白人群体中,受到大量的限制
CF 变体的数量和当前方法的有限吞吐量识别罕见的 CF 变体响应。
随着新的校正剂和/或增强剂的获得,治疗性鸡尾酒可能会变得更具挑战性
解决这一挑战需要能够实现高效生化和/或的新技术。
罕见 CF 变体的药理学分析在下文中,我们建议通过独特的方法来应对这一挑战。
我们展示了新兴遗传、生化和计算方法的融合。
(DMS) 可用于并行比较校正器对数百个变体表达的影响。
我们的初步研究结果让我们对 CF 变体的不同治疗类型有了前所未有的了解,同时
我们首先建议识别具有独特生化和/或药理学特性的众多变体。
扩展这些研究以测量整套 CFTR2 错义的响应
然后我们将表征一组结构多样的校正分子的变体。
具有不同校正反应的变体,以识别对抗这些小影响的 CFTR 相互作用
然后,我们将 CRISPR/Cas9 技术与 DMS 融合,以确定这些相互作用如何影响。
然后,我们将使用最先进的结构建模方法来了解 CF 变异疗法的范围。
鉴定 CFTR 蛋白中与拮抗相互作用形成相关的结构缺陷
然后,我们将利用机器学习根据 CFTR 变异体对 CF 变异体进行分类。
最后,我们将评估批准的校正剂对药物的影响。
使用行业标准短路电流分析来分析以前未表征的变体的功能特性
费舍尔大鼠甲状腺和人类气道上皮细胞的研究将有助于扩大这一范围。
确定可治疗的 CF 基因型,并提供优化 CF 药物靶向的新工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lars Plate其他文献
Lars Plate的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lars Plate', 18)}}的其他基金
Coordination of chaperone interactions that dictate protein folding and trafficking
决定蛋白质折叠和运输的伴侣相互作用的协调
- 批准号:
10202661 - 财政年份:2019
- 资助金额:
$ 68.77万 - 项目类别:
Coordination of chaperone interactions that dictate protein folding and trafficking
决定蛋白质折叠和运输的伴侣相互作用的协调
- 批准号:
10000953 - 财政年份:2019
- 资助金额:
$ 68.77万 - 项目类别:
Coordination of chaperone interactions that dictate protein folding and trafficking
决定蛋白质折叠和运输的伴侣相互作用的协调
- 批准号:
10445003 - 财政年份:2019
- 资助金额:
$ 68.77万 - 项目类别:
Coordination of chaperone interactions that dictate protein folding and trafficking
决定蛋白质折叠和运输的伴侣相互作用的协调
- 批准号:
10581263 - 财政年份:2019
- 资助金额:
$ 68.77万 - 项目类别:
Coordination of chaperone interactions that dictate protein folding and trafficking
决定蛋白质折叠和运输的伴侣相互作用的协调
- 批准号:
10672931 - 财政年份:2019
- 资助金额:
$ 68.77万 - 项目类别:
相似国自然基金
脂代谢紊乱对成骨细胞线粒体自噬的影响及其基于内吞作用的调控机制
- 批准号:82360167
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
IRF6通过IFN-α/β-JAK1-STAT1-BNIP3L轴调控线粒体自噬促进平滑肌细胞铁死亡影响主动脉夹层的作用和机制研究
- 批准号:82370487
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于多主体仿真与类器官建模探讨人参皂苷-莪术醇通过影响线粒体-溶酶体互作调控卵巢癌细胞自噬的作用机制研究
- 批准号:82305301
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Nomo1通过线粒体相关内质网膜影响线粒体自噬调控病理性心肌肥大的作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
二酰基甘油O-酰基转移酶1调控自噬流影响前列腺癌生长的作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Analysis of Single Cell Transcriptomics and Cardiac Metabolism in Heart Failure with Preserved Ejection Fraction
保留射血分数的心力衰竭的单细胞转录组学和心脏代谢分析
- 批准号:
10571526 - 财政年份:2023
- 资助金额:
$ 68.77万 - 项目类别:
Microphysiological Systems to Study Hypoxic Cardiac Injury
研究缺氧性心脏损伤的微生理系统
- 批准号:
10591258 - 财政年份:2023
- 资助金额:
$ 68.77万 - 项目类别:
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:
10678789 - 财政年份:2023
- 资助金额:
$ 68.77万 - 项目类别:
The role of tumor cell-of-origin-specific PDL1 on tumorigenesis and tumor progression
肿瘤细胞源特异性PDL1在肿瘤发生和进展中的作用
- 批准号:
10679453 - 财政年份:2023
- 资助金额:
$ 68.77万 - 项目类别: