Computationally-Inspired Design of Non-Viral Gene Delivery Vehicles for mRNA-Based Cystic Fibrosis Therapies
用于基于 mRNA 的囊性纤维化治疗的非病毒基因传递载体的计算启发设计
基本信息
- 批准号:10760605
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-10 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectBindingBiotechnologyBreathingBusinessesCell LineCell membraneCellsChemicalsComplexComputational BiologyCystic FibrosisCystic Fibrosis Transmembrane Conductance RegulatorDevelopmentDiagnosisDiseaseDrug Delivery SystemsElectrolytesEncapsulatedEnvironmentEpithelial CellsEpitheliumFoundationsGene DeliveryGenetic DiseasesGlycopeptidesHumanImmuneImmune EvasionImmunologicsImpairmentIn VitroInfectionInvestigationLectinLettersLibrariesLifeLiquid substanceLungMachine LearningMacrophageMechanicsMessenger RNAMethodologyMethodsModalityModelingMucous MembraneMucous body substanceMutationNucleic AcidsPathogenicityPatientsPenetrationPeptidesPerformancePersonsPhasePolymersPolysaccharidesProcessProductionPrognosisPulmonary Cystic FibrosisPulmonary PathologyRegulator GenesRespiratory FailureSodium ChannelSpecificityStructureSystemTherapeutic AgentsToxic effectUniversitiesViral Vectorairway obstructionautosomebronchial epitheliumchronic infectiondelivery vehicledesignexpectationfunctional groupgene therapyimaging modalityimmunogenicityimprovedinnovationlipid nanoparticlemRNA deliverymanufacturemucus clearancenon-viral gene deliverynovel strategiesnovel therapeuticsnucleic acid-based therapeuticspatient populationrecessive genetic traitrespiratory virusscreeningsmall moleculesurvival outcomeuptakevirtual
项目摘要
PROJECT SUMMARY
Cystic fibrosis (CF) is a debilitating and life-shortening disease affecting more than 70,000 people worldwide,
with ~1,000 new cases expected to be diagnosed every year. This disease is an autosomal recessive genetic
disorder associated with mutations in the CF transmembrane conductance regulator (CFTR). These mutations
impairs the ionic transport across the cell membrane. In the pulmonary epithelium, this impairment results in
an overproduction and accumulation of mucus, leading to airway obstructions and leaving patients vulnerable
to persistent pathogenic infections and severe respiratory failure. In recent years, treatment of CF with small
molecule therapies has been very impactful, however not all patients can be treated with these commercially
available therapies. More recently, advances in gene therapy enable new approaches to the greatment of CF,
such as target the underlying cause of CF lung pathology, and even restore or replace the CFTR gene, with
expectations of improved prognosis and survival outcomes. However, these therapies are typically large,
complex molecules, such as mRNA, which require specialized delivery systems. Viral vectors and lipid
nanoparticles represent the current state of the art in gene delivery, however these methods are limited by
immunogenicity, complex manufacturing, and most crucially, limited ability to traverse the mucus layerThe
three principal obstacles of CF localized delivery are the need to (i) overcome entrapment within the mucosal
barrier, (ii) avoiding recognition and disruption by immune cells such as lung macrophages, and finally, (iii)
effective intracellular entry. We propose to leverage computational optimization and structure-dynamics
modeling to design polymer-based delivery vehicles for mRNA payloads to overcome these obstacles. This
project brings together Nanite’s advanced capabilities in high throughput polymer synthesis and machine
learning together with design of glycopeptides using first-principles computational biology approaches
pioneered by Dr. Srirupa Chakraborty at Northeastern University. The availability of effective delivery vehicles
across virtually all modes of gene therapies across all indications is a well-recognized commercial need.
Nanite’s approach is to address this need by covering the broadest possible design space using a combination
of computational design, high throughput synthesis and screening, and machine learning-based optimization.
Successful completion of this Phase I project will enable us to extend this approach to CF.
项目概要
囊性纤维化 (CF) 是一种使人衰弱、缩短寿命的疾病,影响着全世界 70,000 多人,
预计每年约有 1,000 例新病例被诊断出来。这种疾病是一种常染色体隐性遗传病。
与 CF 跨膜电导调节因子 (CFTR) 突变相关的疾病。
损害肺上皮细胞膜上的离子运输,这种损害会导致
粘液过度产生和积聚,导致气道阻塞,使患者变得脆弱
近年来CF治疗以持续性病原感染和严重呼吸衰竭为主。
分子疗法非常有影响力,但并非所有患者都能接受商业化治疗
最近,基因治疗的进步为治疗 CF 提供了新的方法,
例如针对 CF 肺部病理的根本原因,甚至恢复或替换 CFTR 基因,
改善预后和生存结果的期望然而,这些疗法通常规模较大,
复杂的分子,例如 mRNA,需要专门的病毒载体和脂质。
纳米颗粒代表了基因传递领域的最新技术,但是这些方法受到以下限制:
免疫原性、制造复杂,最重要的是,穿过粘液层的能力有限
CF 局部递送的三个主要障碍是需要 (i) 克服粘膜内的截留
屏障,(ii) 避免被肺巨噬细胞等免疫细胞识别和破坏,最后,(iii)
我们建议利用计算优化和结构动力学。
建模以设计基于聚合物的 mRNA 有效负载递送载体,以克服这些障碍。
项目汇集了 Nanite 在高通量聚合物合成和机器方面的先进能力
使用第一原理计算生物学方法一起学习和设计糖肽
由东北大学 Srirupa Chakraborty 博士首创 有效的运载工具的可用性。
涵盖几乎所有适应症的基因治疗模式是公认的商业需求。
Nanite 的方法是通过使用组合覆盖尽可能广泛的设计空间来满足这一需求
计算设计、高通量合成和筛选以及基于机器学习的优化。
第一阶段项目的成功完成将使我们能够将这种方法扩展到CF。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shashi Murthy其他文献
Shashi Murthy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shashi Murthy', 18)}}的其他基金
Automated Patient-Specific Dendritic Cell Generation for Transcriptomics-Driven Vaccinology
用于转录组驱动的疫苗学的自动患者特异性树突状细胞生成
- 批准号:
9093709 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Automated Patient-Specific Dendritic Cell Generation for Transcriptomics-Driven Vaccinology
用于转录组驱动的疫苗学的自动患者特异性树突状细胞生成
- 批准号:
9275355 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Microfluidic Cell Separation for Tissue Engineering and Regenerative Medicine
用于组织工程和再生医学的微流控细胞分离
- 批准号:
8253757 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Microfluidic Cell Separation for Tissue Engineering and Regenerative Medicine
用于组织工程和再生医学的微流控细胞分离
- 批准号:
8059657 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Microfluidic Cell Separation for Tissue Engineering and Regenerative Medicine
用于组织工程和再生医学的微流控细胞分离
- 批准号:
7882991 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
相似国自然基金
基于lncRNA NONHSAT042241/hnRNP D/β-catenin轴探讨雷公藤衍生物(LLDT-8)对类风湿关节炎滑膜成纤维细胞功能影响及机制研究
- 批准号:82304988
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
针刺手法和参数对针刺效应启动的影响及其机制
- 批准号:82305416
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
二仙汤影响肾上腺皮质-髓质激素分泌及调控下丘脑温度感受器以缓解“天癸竭”潮热的研究
- 批准号:82374307
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
固定翼海空跨域航行器出水稳定性与流体动力载荷影响机制
- 批准号:52371327
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
经济制裁对跨国企业海外研发网络建构的影响:基于被制裁企业的视角
- 批准号:72302155
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Translational genomics in gout: From GWAS signal to mechanism
痛风的转化基因组学:从 GWAS 信号到机制
- 批准号:
10735151 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
SELENOF is a Novel Tumor Suppressor and a New Target to Overcome Racial Disparity in Breast Cancer.
SELENOF 是一种新型肿瘤抑制剂,也是克服乳腺癌种族差异的新靶点。
- 批准号:
10735662 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Understanding and Targeting Host Processes Essential to Plasmodium Infection
了解并针对疟原虫感染所必需的宿主过程
- 批准号:
10735130 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Developing a new platform to characterize and treat disease-associated polycystin variants
开发一个新平台来表征和治疗与疾病相关的多囊蛋白变体
- 批准号:
10726754 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别: