Soft robotic sensor arrays for fast and efficient mapping of cardiac arrhythmias.
软机器人传感器阵列可快速有效地绘制心律失常图。
基本信息
- 批准号:10760164
- 负责人:
- 金额:$ 29.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAblationAddressAdoptionAffectAnatomyApicalArrhythmiaAtrial FibrillationBlood flowCardiacCardiac Electrophysiologic TechniquesCardiac ablationCathetersCessation of lifeComplexDevelopmentDevicesDiagnosisElasticityElectrodesElectronicsElectrophysiology (science)FluoroscopyFutureGoalsHeartHospital AdministratorsHospitalsInterviewLasersLeadLeftMapsMarketingMechanicsMedicalMedical TechnologyMethodsMitral ValveModelingMyocardial IschemiaPainPathway interactionsPatient-Focused OutcomesPatientsPerformancePharmacologic SubstancePhasePhysiologicalPolychlorinated BiphenylsPolymersPolyurethanesPopulationProceduresPropertyPuncture procedureRiskRoboticsSignal TransductionSourceSpecialistSpeedSystemTachyarrhythmiasTechnologyThinnessTimeTissuesVentricularVentricular ArrhythmiaVentricular FibrillationVentricular FunctionVentricular Tachycardiacostdesigneffective therapyelectronic sensorfabricationflexibilityimprovedin vivoinnovationinnovative technologiesmanufacturematerials scienceminimally invasivenew technologynovelnovel therapeutic interventionnovel therapeuticsporcine modelpreservationsensorsudden cardiac deathtool
项目摘要
Abstract -
Conform Medical is applying materials science, soft robotics, and stretchable electronics to revolutionize the
mapping and ablation of the aberrant electrical signals underlying arrythmias, starting with ventricular tachycardia
(VT), then expanding to other types of cardiac arrythmia such as atrial fibrillation (AFib).
Cardiac electrophysiology specialists at hospitals and cardiac centers are commonly pained by the lack of tools
to efficiently map ventricular foci with enough speed to diagnose VT. This wide, complex tachyarrhythmia is
usually caused by ischemic heart disease, and VT, along with ventricular fibrillation (VF), are responsible for
75% of the 450,000 sudden cardiac deaths that occur yearly in the U.S. Electrophysiological mapping is critical
for VT management, especially for patients for whom VT cannot be well managed by pharmaceuticals alone. In
these cases, treatment comprises a procedure in which VT is induced and a minimally invasive electrode catheter
is used to map cardiac electrical signals and determine the source of the aberrant electrical pathways associated
with the VT. Keeping these patients in a state of induced arrythmia is only safe for a short period of time, often
just minutes. However, current mapping catheters are not able to acquire a sufficiently detailed activation map
of the ventricle in such a short time. These limitations lead to suboptimal results, with nearly 90% of VT patients
deemed ‘unmappable’.
Conform Medical addresses these critical needs with a novel device composed of soft robotic and stretchable
electronic technology, which will enable fast and accurate cardiac mapping of ventricular foci. The device’s soft
robotic sensor array (SRSA) uniformly conforms 80 flexible sensors to the left ventricular tissue by hydraulically
actuating an elastic thin-walled polymer in the form of a traditional basket mapping catheter. The soft robotic
basket is integrated with a stretchable sensing array formed from low-cost, scalable flex-PCBs, and undergoes
a proprietary laser-based processing method to render them highly stretchable. This innovative approach
overcomes the main challenges in the development of a whole chamber basket catheter for cardiac mapping,
namely scalable fabrication, integration, and conformability.
The goal of this Phase I project is to de-risk the use of the technology in ventricles by optimizing delivery in 3D
printed models that recapitulate the required catheter trackability and anatomic features/functions, validating its
performance in vivo, and demonstrating compatibility with an open, commercial cardiac mapping system. The
specific aims for this project are: 1) Optimize the catheter delivery system in a 3D printed heart model; 2)
Demonstrate the functionality of the device in vivo in porcine models; and 3) Integrate the device with a
commercial cardiac mapping system to determine accuracy of spatial mapping and validate the quality of
electrical readings. This innovative technology will offer an answer the growing burden of ventricular arrhythmias,
which calls for novel and effective therapies, and can also be applied to AFib, and other arrythmias.
抽象的 -
Conform Medical 正在应用材料科学、软机器人技术和可拉伸电子设备来彻底改变
从室性心动过速开始,对心律失常的异常电信号进行测绘和消融
(VT),然后扩展到其他类型的心律失常,例如心房颤动 (AFib)。
医院和心脏中心的心脏电生理学专家通常因缺乏工具而感到痛苦
以足够的速度有效地绘制心室病灶来诊断 VT 这种广泛、复杂的快速性心律失常。
通常由缺血性心脏病引起,VT 与心室颤动 (VF) 一起导致
美国每年发生 450,000 例心脏性猝死,其中 75% 电生理图测绘至关重要
用于 VT 管理,特别是对于仅通过药物无法很好地管理 VT 的患者。
这些病例的治疗包括诱发 VT 和微创电极导管
用于绘制心脏电信号并确定相关异常电通路的来源
使这些患者处于诱发心律失常的状态通常只在短时间内是安全的。
然而,当前的标测导管无法获得足够详细的激活图。
这些限制导致近 90% 的 VT 患者的结果不理想。
被视为“无法映射”。
Conform Medical 通过由软机器人和可拉伸部件组成的新颖设备满足了这些关键需求
电子技术,将能够快速、准确地绘制该设备的软心室病灶。
机器人传感器阵列 (SRSA) 通过液压方式将 80 个柔性传感器统一贴合到左心室组织
驱动传统篮式测绘导管形式的弹性薄壁聚合物软机器人。
篮子与由低成本、可扩展柔性 PCB 形成的可拉伸传感阵列集成,并经过
一种专有的基于激光的加工方法使它们具有高度的可拉伸性。
克服了开发用于心脏标测的全室篮式导管的主要挑战,
即可扩展制造、集成和一致性。
该第一阶段项目的目标是通过优化 3D 传输来降低在心室中使用该技术的风险
打印模型,概括所需的导管可追踪性和解剖特征/功能,验证其
体内性能,并证明与开放的商业心脏测绘系统的兼容性。
该项目的具体目标是:1) 优化 3D 打印心脏模型中的导管输送系统;2)
在猪模型中演示该设备的体内功能;以及 3) 将设备与
商业心脏测绘系统,用于确定空间测绘的准确性并验证心脏测绘的质量
这项创新技术将为日益增加的室性心律失常负担提供答案,
这需要新颖有效的疗法,并且也可应用于 AFib 和其他心律失常。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simon Dunham其他文献
Simon Dunham的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simon Dunham', 18)}}的其他基金
Prototype development and validation of soft robotic sensor arrays for mapping cardiac arrhythmia
用于绘制心律失常的软机器人传感器阵列的原型开发和验证
- 批准号:
10722857 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Prototype development and validation of soft robotic sensor arrays for mapping cardiac arrhythmia
用于绘制心律失常的软机器人传感器阵列的原型开发和验证
- 批准号:
10378724 - 财政年份:2021
- 资助金额:
$ 29.99万 - 项目类别:
Patient-Specific Coronary Hemodynamics by 3D Printing
通过 3D 打印进行患者特定的冠状动脉血流动力学
- 批准号:
10386845 - 财政年份:2013
- 资助金额:
$ 29.99万 - 项目类别:
Patient-Specific Coronary Hemodynamics by 3D Printing
通过 3D 打印进行患者特定的冠状动脉血流动力学
- 批准号:
9926910 - 财政年份:2013
- 资助金额:
$ 29.99万 - 项目类别:
相似国自然基金
低密度中性粒细胞促进早期乳腺癌微波消融治疗后复发转移的作用及机制研究
- 批准号:82303710
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微波敏感型铁死亡纳米放大器的构建及其增敏肝癌消融-免疫联合治疗的应用与机制研究
- 批准号:82302368
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
玛纳斯河流域上游吸收性气溶胶来源及其对积雪消融的影响研究
- 批准号:42307523
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于超声混合深度神经网络对PIMSRA心肌热消融边界的实时可视化与识别研究
- 批准号:82302204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
纳米刀消融通过METTL5介导的核糖体18S rRNA m6A修饰募集MDSC促进肝癌复发的作用及机制研究
- 批准号:82373004
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Low-Cost, Single-Use Trans-Nasal Cryotherapy Device for Low-Resource Settings
适用于资源匮乏环境的低成本、一次性经鼻冷冻治疗设备
- 批准号:
10761295 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Prototype development and validation of soft robotic sensor arrays for mapping cardiac arrhythmia
用于绘制心律失常的软机器人传感器阵列的原型开发和验证
- 批准号:
10722857 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Development of a 3D neurovascular unit for in vitro modeling of subarachnoid hemorrhage and screening therapies
开发用于蛛网膜下腔出血体外建模和筛选治疗的 3D 神经血管单元
- 批准号:
10722387 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别: