From synthetic bacterial adhesions to synthetic bacterial materials
从合成细菌粘附到合成细菌材料
基本信息
- 批准号:10707441
- 负责人:
- 金额:$ 31.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-20 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdhesionsAnabolismAreaBacteriaBacterial AdhesinsBacterial AdhesionBasic ScienceBiochemicalBiocompatible MaterialsBiophysicsCell AdhesionCell surfaceCell-Cell AdhesionCellsDepositionDevelopmentDiagnosticDiagnostic EquipmentDrug Delivery SystemsEngineeringEscherichia coliFoundationsFutureGene Expression RegulationGenetic ModelsGoalsGrowthHealthImageIndustryInvestigationKineticsLengthLiteratureLogicMedialMedicalMedicineMethodologyMicrobial BiofilmsMicrofluidicsMicroscopicModelingMolecularMorphologyNatural CompoundOutcomePathway interactionsPatternPharmaceutical PreparationsPlayPorosityPropertyProteinsPublicationsResearchResolutionSignal TransductionSpecificityStructureSurfaceSystemTestingWorkbacterial communitybiophysical modelbiophysical propertiescell growthdesigndiagnostic assaydiagnostic strategyexperimental studyin vivoinfancyinnovationinstrumentationmeternoveloptogeneticspredictive modelingself assemblysmall moleculesupport toolssynthetic biologythree dimensional structuretoolviscoelasticity
项目摘要
Engineering of bacterial synthetic multicellular systems and materials hold promise for many health-
relevant applications such as modular drug biosynthesis, living diagnostic devices, and synthetic biofilm research
models. To date, bacterial synthetic biology has largely focused on the scales of molecules and single cells.
Equivalent work on bacterial synthetic consortia is much less advanced, in significant part due to the previous lack
of suitable synthetic and genetically encoded cell-cell adhesion tools to control the assembly, development, and
functionality of multicellular systems. We recently developed the first such synthetic cell-cell adhesion toolbox, as
well as tools for optogenetically controlling cell-surface deposition and patterning.
The specific objectives of this research are to significantly advance these synthetic cell-adhesion tools, and
to develop design principles and predictive modeling tools that enable consortia engineering and patterning that
integrate all relevant length scales (i.e., molecular, cellular, and multicellular), and ultimately pave the way for
medially relevant applications. Our main hypothesis is that we can significantly advance our control over the
strength, specificity, and subcellular localization of synthetic adhesion proteins in Escherichia coli, which will
allow rational tuning of consortium-level biophysical properties such as porosity and viscoelasticity, and which
will ultimately enable versatile multicellular consortium engineering and patterning. This work will constitute
a foundation for various biomedical applications such as biocompatible materials, multicellular plug-and-play
pathway engineering, targeted in-vivo drug delivery, and living diagnostic devices.
Our interdisciplinary methodology combines synthetic biology, biophysics, instrumentation and modeling. All
experiments will be done in a quantitative manner. The proposed investigations include three independent yet
synergistic Specific Aims motivated by our hypothesis: (Aim 1) Advance the functionality of the synthetic adhesin
toolkit at the subcellular level; (Aim 2) Achieve engineering control over synthetic consortium properties such as
viscoelasticity and porosity at the scale of 10-100 µm; and (Aim 3) Achieve higher-level consortium patterning
on the scale of centimeters and demonstrate potential for medical applications.
The PI (Prof. Riedel-Kruse) and his team are well-suited for this project as we have significant
expertise in synthetic biology, biophysics, instrumentation (e.g., microfluidics, imaging), and modeling genetic
circuits and biophysical systems across scales. We developed the first synthetic cell-cell and optogenetic cell-surface
adhesion toolboxes in bacteria. Multiple collaborators provide additional domain expertise in key areas. Overall,
this project's innovation lies in establishing synthetic adhesins as an essential and integral component of the
synthetic circuit-engineering toolbox and in establishing a novel paradigm for modular engineering of multicellular
living materials. Accordingly, this project will broadly impact the engineering of synthetic consortia for basic
research as well as enable a dynamic spectrum of future applications in health.
细菌的工程合成多细胞系统和材料对许多健康有望
相关应用,例如模块化药物生物合成,生活诊断设备和合成生物膜研究
型号。迄今为止,细菌合成生物学主要集中在分子和单细胞的尺度上。
在细菌合成宪法上的同等工作要少得多,这是由于先前缺乏的重要部分
适当的合成和一般编码的细胞细胞粘合剂工具,以控制组装,开发和
多细胞系统的功能。我们最近开发了第一个这样的合成细胞 - 细胞粘合剂工具箱,
以及用于光学控制细胞表面沉积和图案的工具。
这项研究的特定目标是显着推进这些合成细胞粘附工具,并
开发设计原理和预测建模工具,使财团工程和图案能够
整合了所有相关的长度尺度(即分子,细胞和多细胞),并最终为
内侧相关的应用。我们的主要假设是我们可以显着提高我们对
大肠杆菌中合成粘合剂蛋白的强度,特定的城市和亚细胞定位,它将
允许对财团级生物物理特性(例如孔隙率和粘弹性)进行合理调整,并且
最终将实现多功能多细胞联盟工程和图案。这项工作将构成
为各种生物医学应用(例如生物相容性材料),多细胞插入式插件的基础
途径工程,有针对性的体内药物输送和生活诊断设备。
我们的跨学科方法结合了合成生物学,生物物理学,仪器和建模。全部
实验将以定量的方式进行。拟议的调查包括三个独立
协同特定的目的是由我们的假设激励:(目标1)提高合成粘合剂的功能
在亚细胞水平上的工具包; (AIM 2)实现对合成财产的工程控制,例如
10-100 µm的粘弹性和孔隙率; (AIM 3)实现高级财团模式
在厘米的规模上,显示出医疗应用的潜力。
PI(Riedel-Kruse教授)和他的团队非常适合这个项目,因为我们很重要
合成生物学,生物物理学,仪器(例如微功能,成像)和建模遗传学的专业知识
跨尺度的电路和生物物理系统。我们开发了第一个合成细胞细胞和光遗传细胞表面
细菌中的粘附工具箱。多个合作者在关键领域提供其他领域专业知识。全面的,
该项目的创新在于建立合成粘附剂,作为作为不可或缺的组成部分
合成电路工程工具箱,并在建立一个用于多细胞模块化工程的新型范式
活物质。根据该项目将广泛影响基本合成财团的工程
研究以及实现未来在健康中应用的动态范围。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hans Ingmar Riedel-Kruse其他文献
Hans Ingmar Riedel-Kruse的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hans Ingmar Riedel-Kruse', 18)}}的其他基金
From synthetic bacterial adhesions to synthetic bacterial materials
从合成细菌粘附到合成细菌材料
- 批准号:
10586278 - 财政年份:2022
- 资助金额:
$ 31.1万 - 项目类别:
Biofilm Lithography: A newparadigm to optically control and study biofilm growth dynamics
生物膜光刻:光学控制和研究生物膜生长动力学的新范例
- 批准号:
10102606 - 财政年份:2020
- 资助金额:
$ 31.1万 - 项目类别:
相似国自然基金
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
- 批准号:32301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
载Pexidartinib的纳米纤维膜通过阻断CSF-1/CSF-1R通路抑制巨噬细胞活性预防心脏术后粘连的研究
- 批准号:82370515
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
泛素连接酶SMURF2通过SMAD6-COL5A2轴调控宫腔粘连纤维化的分子机制研究
- 批准号:82360301
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
负载羟基喜树碱的双层静电纺纳米纤维膜抑制肌腱粘连组织增生的作用和相关机制研究
- 批准号:82302691
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
膜仿生载基因纳米球体内重编程巨噬细胞抑制肌腱粘连的机制研究
- 批准号:82372389
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
From synthetic bacterial adhesions to synthetic bacterial materials
从合成细菌粘附到合成细菌材料
- 批准号:
10586278 - 财政年份:2022
- 资助金额:
$ 31.1万 - 项目类别:
ABC transporter-mediated secretion of capsular polysaccharides
ABC 转运蛋白介导的荚膜多糖分泌
- 批准号:
10412117 - 财政年份:2021
- 资助金额:
$ 31.1万 - 项目类别:
ABC transporter-mediated secretion of capsular polysaccharides
ABC 转运蛋白介导的荚膜多糖分泌
- 批准号:
10287699 - 财政年份:2021
- 资助金额:
$ 31.1万 - 项目类别:
Tunable Mechano-Activated Microcapsules for Therapeutic Delivery
用于治疗传递的可调谐机械激活微胶囊
- 批准号:
10017663 - 财政年份:2017
- 资助金额:
$ 31.1万 - 项目类别:
Center of Biomedical Research Excellence in Matrix Biology Phase II
基质生物学卓越生物医学研究中心第二期
- 批准号:
10844074 - 财政年份:2014
- 资助金额:
$ 31.1万 - 项目类别: