AI-informed Signaling Factor Design for in vitro Rejuvenating Mesenchymal Stromal Cells
用于体外再生间充质基质细胞的人工智能信号因子设计
基本信息
- 批准号:10707372
- 负责人:
- 金额:$ 37.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-21 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAgeAgingAlgorithmsArtificial Intelligence platformBiochemicalCell AgingCell TherapyCellsCharacteristicsClinicalDDR2 geneDataDiseaseDrug DesignEGF geneEngineeringEnsureFRAP1 geneFibroblast Growth FactorGene ExpressionGenetic TranscriptionGoalsIn VitroKnowledgeMetabolicModelingMorphologyOutcomePhenotypeProcessProliferatingRejuvenationReproducibilityResearchSignal PathwaySignal TransductionTechnologyTherapeuticTrainingartificial intelligence methodcellular engineeringdeep learningdeep learning modeldesignimprovedin vivoinnovationmesenchymal stromal cellresponsesenescencetool
项目摘要
ABSTRACT
While mesenchymal stromal cells (MSCs) hold enormous promise for treating many challenging
diseases, a major barrier toward clinically meaningful MSC therapies is the inability to produce potent MSCs
consistently. Specifically, in vitro cultured MSCs often rapidly enter senescence in which they lose their potency.
In contrast to natural in vivo senescence, such in vitro aging has been shown to be largely driven by misregulated
metabolic signaling in culture. To address this grand challenge, many signaling pathways (e.g., FGF, ATM, SRT,
mTOR, EGF, DDR2) have been identified for regulating senescence-related processes. Building upon these
discoveries, this R35 MIRA proposal aims to develop an innovative engineering approach to delaying the MSC
senescence process by collectively adjusting these signaling pathways. Specifically, we hypothesize that a
sufficiently trained AI model can predict the signaling factor combination that effectively slows down or even
reverts the senescence-related transcriptional drift. To achieve such a goal, my research aims to address three
knowledge/technology gaps in MSC engineering (Fig. 1B): 1) how to accurately phenotype live MSCs (e.g.,
characteristics, proliferation, and potency); 2) how to predict signaling factors that dictate the desired
transcriptional response; and 3) how to ensure the robustness of such predictions.
In challenge 1, this proposal will expand our previously developed AI platform by developing approaches
to acquiring large-scale AI training data that cover a wide range of MSC phenotypes and interpreting black-box
deep learning models. The goal is to decipher the morphology-gene expression relationship in MSCs. In
challenge 2, we will utilize deep learning to identify the signaling factor combination and predictively adjust gene
expression in MSCs. In the third challenge, we will develop algorithms that improve the robustness of AI models
and turn our proof-of-concept AI platforms into reliable tools for practical clinical utilizations. The immediate
outcome of our proposed research will lead to a high-throughput phenotyping and engineering platform of MSCs.
The proposed experimental platform will also enable us to establish better understandings in MSC
mechanobiology and senescence signaling interactions.
抽象的
中充质基质细胞(MSC)具有巨大的前途,可以治疗许多具有挑战性
疾病,临床上有意义的MSC疗法的主要障碍是无法产生有效的MSC
一贯。具体而言,体外培养的MSC通常会迅速进入衰老,在这些衰老中失去效力。
与天然体内衰老相反,这种体外衰老已被证明在很大程度上受到了不良调节的驱动
培养中的代谢信号传导。为了应对这一巨大的挑战,许多信号通路(例如FGF,ATM,SRT,
MTOR,EGF,DDR2)已被确定用于调节与衰老相关的过程。基于这些
发现R35 MIRA提案旨在开发一种创新的工程方法来推迟MSC
通过共同调整这些信号通路,衰老过程。具体来说,我们假设
足够训练的AI模型可以预测有效减慢甚至
恢复与衰老相关的转录漂移。为了实现这样一个目标,我的研究旨在解决三个
MSC工程中的知识/技术差距(图1B):1)如何准确表型现场MSC(例如,
特征,增殖和效力); 2)如何预测决定所需的信号因子
转录响应; 3)如何确保此类预测的鲁棒性。
在挑战1中,该提案将通过开发方法扩展我们先前开发的AI平台
获取涵盖多种MSC表型并解释黑盒的大规模AI训练数据
深度学习模型。目的是破译MSC中的形态 - 基因表达关系。在
挑战2,我们将利用深度学习来确定信号传导因子组合并进行预测调整基因
在MSC中的表达。在第三个挑战中,我们将开发算法来改善AI模型的鲁棒性
并将我们的概念验证AI平台变成可靠的临床利用工具。直接
我们提出的研究的结果将导致MSC的高通量表型和工程平台。
拟议的实验平台还将使我们能够在MSC中建立更好的理解
机械生物学和衰老信号传导相互作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Neil Lin其他文献
Neil Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Neil Lin', 18)}}的其他基金
High-throughput Flow Culture of 3D Human PKD Models for Therapeutic Screening
用于治疗筛选的 3D 人体 PKD 模型的高通量流式培养
- 批准号:
10649222 - 财政年份:2023
- 资助金额:
$ 37.16万 - 项目类别:
AI-informed Signaling Factor Design for in vitro Rejuvenating Mesenchymal Stromal Cells
用于体外再生间充质基质细胞的人工智能信号因子设计
- 批准号:
10875054 - 财政年份:2022
- 资助金额:
$ 37.16万 - 项目类别:
AI-Informed Signaling Factor Design for In Vitro Rejuvenating Mesenchymal Stromal Cells
用于体外再生间充质基质细胞的人工智能信号因子设计
- 批准号:
10733714 - 财政年份:2022
- 资助金额:
$ 37.16万 - 项目类别:
相似国自然基金
TBX20在致盲性老化相关疾病年龄相关性黄斑变性中的作用和机制研究
- 批准号:82220108016
- 批准年份:2022
- 资助金额:252 万元
- 项目类别:国际(地区)合作与交流项目
LncRNA ALB调控LC3B活化及自噬在体外再生晶状体老化及年龄相关性白内障发病中的作用及机制研究
- 批准号:81800806
- 批准年份:2018
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
APE1调控晶状体上皮细胞老化在年龄相关性白内障发病中的作用及机制研究
- 批准号:81700824
- 批准年份:2017
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
KDM4A调控平滑肌细胞自噬在年龄相关性血管老化中的作用及机制
- 批准号:81670269
- 批准年份:2016
- 资助金额:55.0 万元
- 项目类别:面上项目
老年人一体化编码的认知神经机制探索与干预研究:一种减少与老化相关的联结记忆缺陷的新途径
- 批准号:31470998
- 批准年份:2014
- 资助金额:87.0 万元
- 项目类别:面上项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 37.16万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 37.16万 - 项目类别:
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 37.16万 - 项目类别:
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:
10678789 - 财政年份:2023
- 资助金额:
$ 37.16万 - 项目类别: