Triboelectric Ambient Mass Spectrometry Imaging of Renal Cell Carcinomas

肾细胞癌的摩擦电环境质谱成像

基本信息

项目摘要

Principal Investigator: FM Fernández – Triboelectric Ambient Mass Spectrometry Imaging of Renal Cell Carcinomas Understanding complex chemical and biological alterations in cancer requires detailed knowledge of the molecular composition of cancer tissues and the changes in these alterations over time, and following interventions. Mass spectrometry imaging (MSI) is the tool of choice for probing thin tissue sections when femto- to attomole sensitivity is required with simultaneous exquisite specificity. In this project it is proposed to develop a proof-of-concept MSI ion source based on a triboelectric nanogenerator (TENG), and benchmark it’s performance against standard MSI techniques such as matrix-assisted laser desorption/ionization (MALDI) and desorption electrospray ionization (DESI) using de-identified clear cell renal carcinoma tissue sections. These are lipid-rich cancer tumors where lipid metabolism plays a major role in disease development. TENG, when coupled to MS, have shown higher sensitivity than standard nanoelectrospray ionization, particularly for difficult to ionize, low polarity lipids and metabolites. TENG can also be used to yield structural information about important molecules such as lipids, by enlarging the TENG electrode area, which allows to carry out controlled gas-phase ion molecule reactions that yield diagnostic fragmentation patterns. Tissue sections to be examined by TENG MSI will be selected from the biobank maintained by Prof. John Petros, a long- standing collaborator at Emory University. The TENG MSI ion source will be coupled to an ion mobility- mass spectrometer to enable distinguishing lipid isobars during imaging experiments, in collaboration with the instrument vendor (Waters). Co-registration of TENG images with MALDI and DESI images will be conducted with algorithms developed with collaborators at Georgia Tech (Kemp). Improvements to the TENG MSI ion source will be achieved using a symbolic regression approach that will enable the simultaneous optimization of several quantitative performance metrics such as spatial resolution, overall sensitivity, the number of detected spectral features, the number of lipid/metabolite chemical classes detected, and the number of oxidized lipids. Overall, this project will develop an MSI technology that will become an invaluable tool for investigating lipid-rich tissues of importance in cancer research.
首席研究员:FMFernández - 肾细胞癌的Triboelectric环境质谱成像 了解癌症中复杂的化学和生物学改变需要详细 了解癌组织的分子组成以及这些改变的变化 时间和以下干预措施。质谱成像(MSI)是探测薄的选择工具 当需要简单的独家特异性时,需要进行组织切片。 在这个项目中,建议开发基于Triboelectric的概念验证MSI ION来源 纳米发育仪(TENG)和基准测试对标准MSI技术的性能,例如 基质辅助激光解吸/电离(MALDI)和解吸电喷雾电离(DESI) 使用取消识别的透明细胞肾癌组织切片。这些是富含脂肪的癌症的肿瘤 脂质代谢在疾病发展中起着重要作用。 Teng耦合到MS时,已显示 比标准纳米电喷雾电离更高的灵敏度,特别是对于难以电离,低 极性脂质和代谢产物。 Teng也可以用于产生有关重要的结构信息 通过增加Teng电极区域,允许进行受控的分子,例如脂质。 气相离子分子反应产生诊断碎片的模式。组织切片为 Teng MSI检查的将从约翰·佩特罗斯(John Petros)教授维护的生物库中选择, 埃默里大学的常规合作者。 teng msi离子源将耦合到离子迁移率 - 质谱仪可以在成像实验过程中区分脂质等射线,并协作 与仪器供应商(水)。 Teng图像与Maldi和Desi图像共同注册 将使用与佐治亚理工学院(KEMP)合作者开发的算法进行。改进 将使用符号回归方法来实现teng msi ion源 简单优化几个定量性能指标,例如空间分辨率, 总体敏感性,检测到的光谱特征的数量,脂质/代谢化学的数量 检测到的类,以及氧化脂质的数量。总体而言,该项目将开发MSI技术 这将成为研究癌症研究中重要性富含脂质的组织的宝贵工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Facundo Martin Fernandez其他文献

Facundo Martin Fernandez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Facundo Martin Fernandez', 18)}}的其他基金

Lipid Biomarker Efflux from the Brain following TBI
TBI 后大脑中的脂质生物标志物流出
  • 批准号:
    9981381
  • 财政年份:
    2020
  • 资助金额:
    $ 21.51万
  • 项目类别:
Lipid Biomarker Efflux from the Brain following TBI
TBI 后大脑中的脂质生物标志物流出
  • 批准号:
    10606606
  • 财政年份:
    2020
  • 资助金额:
    $ 21.51万
  • 项目类别:
Lipid Biomarker Efflux from the Brain following TBI
TBI 后大脑中的脂质生物标志物流出
  • 批准号:
    10383401
  • 财政年份:
    2020
  • 资助金额:
    $ 21.51万
  • 项目类别:
Deep Ovarian Cancer Metabolomics
深部卵巢癌代谢组学
  • 批准号:
    10250319
  • 财政年份:
    2018
  • 资助金额:
    $ 21.51万
  • 项目类别:
Deep Ovarian Cancer Metabolomics
深部卵巢癌代谢组学
  • 批准号:
    10480837
  • 财政年份:
    2018
  • 资助金额:
    $ 21.51万
  • 项目类别:
Deep Ovarian Cancer Metabolomics
深部卵巢癌代谢组学
  • 批准号:
    9789208
  • 财政年份:
    2018
  • 资助金额:
    $ 21.51万
  • 项目类别:
Georgia Comprehensive Metabolomics and Proteomics Unit for MoTrPAC
佐治亚州 MoTrPAC 综合代谢组学和蛋白质组学单位
  • 批准号:
    10320836
  • 财政年份:
    2016
  • 资助金额:
    $ 21.51万
  • 项目类别:
Georgia Comprehensive Metabolomics and Proteomics Unit for MoTrPAC
佐治亚州 MoTrPAC 综合代谢组学和蛋白质组学单位
  • 批准号:
    9394009
  • 财政年份:
    2016
  • 资助金额:
    $ 21.51万
  • 项目类别:

相似海外基金

Ten-Fold Resolution Boost for Magnetic Particle Imaging with Applications to Rapid, Non-Invasive Imaging of CAR-T Cell Therapies, Stroke, GI Bleeds and Pulmonary Embolisms
磁粒子成像分辨率提高十倍,应用于 CAR-T 细胞疗法、中风、胃肠道出血和肺栓塞的快速、非侵入性成像
  • 批准号:
    10714021
  • 财政年份:
    2023
  • 资助金额:
    $ 21.51万
  • 项目类别:
Dynamic single-cell analysis instrument to evaluate immune cell function
动态单细胞分析仪评估免疫细胞功能
  • 批准号:
    10699036
  • 财政年份:
    2023
  • 资助金额:
    $ 21.51万
  • 项目类别:
From Academia to Business: Development of Novel Therapeutics Against HPV-Associated Cancer
从学术界到商界:针对 HPV 相关癌症的新型疗法的开发
  • 批准号:
    10813323
  • 财政年份:
    2023
  • 资助金额:
    $ 21.51万
  • 项目类别:
RR&D Research Career Scientist Award Application
RR
  • 批准号:
    10417473
  • 财政年份:
    2022
  • 资助金额:
    $ 21.51万
  • 项目类别:
Supporting Biomedical Discovery with the ROBOKOP Graph Knowledgebase.
使用 ROBOKOP 图知识库支持生物医学发现。
  • 批准号:
    10697371
  • 财政年份:
    2022
  • 资助金额:
    $ 21.51万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了