Developing Machine Learning Models for Decision Support and Allocation Optimization in Heart Transplantation
开发用于心脏移植决策支持和分配优化的机器学习模型
基本信息
- 批准号:10735348
- 负责人:
- 金额:$ 56.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-04 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAdoptionAdultArtificial IntelligenceClinicalComplexComputer AnalysisComputer SimulationDataData SetDecision MakingDecision Support ModelDecision Support SystemsDevelopmentEvaluationFAIR principlesFaceFailureFutureGoalsHeartHeart TransplantationHeart failureHumanIndividualJudgmentMachine LearningModelingMulticenter TrialsOrganOutcomeOutputPatientsPerformancePoliciesPolicy MakerPolicy MakingPredictive AnalyticsPreparationProcessProviderReportingResearchResourcesRiskSpecific qualifier valueSurvival RateTechnology AssessmentTimeTransplant RecipientsTransplantationVisualWaiting ListsWorkclinical candidateclinical decision-makingclinically relevantdata registryexperiencehigh riskimplementation scienceimplementation strategyimprovedimproved outcomeinnovationmachine learning methodmachine learning modelmortality risknovelopen datapersonalized decisionpost-transplantpredictive modelingprogramsprototyperisk predictionstatisticsstemsuccesssupport toolstooltransplant centerstransplant databasetrendusabilityweb-based tool
项目摘要
PROJECT SUMMARY/ABSTRACT
The impact of heart transplantation (HTx) remains limited by donor shortages, with an estimated 250,000 adults
who may benefit from transplant despite only 3,500 being performed each year in the US. Unfortunately, donor
discard rates remain high at 70-80%, with substantial unexplained variability in donor evaluation and acceptance
practices between centers. Recent data also demonstrate that higher risk recipients are being transplanted
under the new 2018 allocation policy with worse post-transplant survival rates nationally. These trends
collectively underscore current limitations in allocation policy and the ability for individual programs to assess
donor quality and to pair suitable donors with appropriately selected recipients. The latter stems from a
suboptimal process whereby clinicians have to make time-sensitive decisions relying solely upon experience
and judgement without data-driven tools that can analyze numerous donor and recipient data and their complex
interactions to provide rapid and accurate outcome projections. Existing risk models have failed to garner
widespread utilization due to major limitations, including 1) narrow focus on only one of a set of relevant
outcomes, 2) simplistic approach with only modest discriminatory capability (c-statistics <0.70), 3) failure to
account for complex interactions between donor and recipient variables, and 4) use of only static, cross-sectional
data. Our proposal seeks to advance the field by leveraging a novel, comprehensive dataset and machine
learning (ML) to develop robust models that can maximize predictive performance for relevant outcomes and to
better align a candidate's clinical trajectory and anticipated transplant outcome. These models will better account
for complex interrelationships between donor and recipient variables, and will also account for dynamic changes
in candidate and donor parameters. Optimized models will then be incorporated into a decision support system
guided by key stakeholders. In addition, a previously developed artificial intelligence (AI) framework will be used
to optimize heart allocation policy. We have these specific aims: 1) Establish the feasibility and usability of a
stakeholder-guided, ML-derived decision support system for adult HTx; 2) Demonstrate the adaptability of a
previously developed AI-based policy-optimization framework to heart allocation; and 3) Inform and evaluate the
processes and outputs of Specific Aims 1 and 2 using stakeholder engagement and implementation science to
refine and optimize working prototypes and promote the understanding, adoption, and use of data-driven
decision support tools created for HTx. This work will optimize the allocation of scarce resources and ultimately
improve outcomes of HTx.
项目概要/摘要
心脏移植 (HTx) 的影响仍然受到捐赠者短缺的限制,估计有 250,000 名成年人
尽管美国每年只进行 3,500 例移植手术,但他们仍可能受益于移植手术。不幸的是,捐助者
丢弃率仍然高达 70-80%,捐赠者评估和接受方面存在大量无法解释的差异
中心之间的实践。最近的数据还表明,接受移植的风险较高
根据2018年新的分配政策,全国移植后存活率较差。这些趋势
共同强调当前分配政策的局限性以及个别计划评估的能力
捐赠者质量并将合适的捐赠者与适当选择的接受者配对。后者源于一个
临床医生必须仅依靠经验做出时间敏感的决策的次优过程
无需数据驱动工具即可进行判断,这些工具可以分析大量的捐赠者和接受者数据及其复杂的数据
互动以提供快速、准确的结果预测。现有的风险模型未能获得
由于主要限制而被广泛使用,包括 1) 仅关注一组相关的其中一个
结果,2) 简单化方法,只有适度的歧视能力(c 统计量 <0.70),3) 未能
考虑捐赠者和接受者变量之间复杂的相互作用,以及 4) 仅使用静态、横截面
数据。我们的提案旨在通过利用新颖、全面的数据集和机器来推动该领域的发展
学习(ML)开发强大的模型,可以最大限度地提高相关结果的预测性能,并
更好地调整候选人的临床轨迹和预期的移植结果。这些模型将更好地解释
用于捐助者和接受者变量之间复杂的相互关系,并且还将考虑动态变化
候选者和捐赠者参数。然后优化的模型将被纳入决策支持系统
由主要利益相关者指导。此外,还将使用之前开发的人工智能(AI)框架
优化心脏配置政策。我们有以下具体目标: 1) 建立
利益相关者引导的、基于机器学习的成人 HTx 决策支持系统; 2)展示适应性
之前开发了基于人工智能的心脏分配政策优化框架; 3) 告知并评估
利用利益相关者参与和实施科学来确定具体目标 1 和 2 的流程和产出
完善和优化工作原型,促进对数据驱动的理解、采用和使用
为 HTx 创建的决策支持工具。这项工作将优化稀缺资源的配置,并最终
改善 HTx 的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arman Kilic其他文献
Arman Kilic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Combining sources of information to improve HIV pre-exposure prophylaxis
结合信息来源改善艾滋病毒暴露前预防
- 批准号:
10700193 - 财政年份:2023
- 资助金额:
$ 56.6万 - 项目类别:
Resources and Workforce Development for Research on NIH/NIAID High Priority Pathogens at the University of Missouri Regional Biocontainment Laboratory
密苏里大学区域生物防护实验室 NIH/NIAID 高优先级病原体研究的资源和劳动力发展
- 批准号:
10793827 - 财政年份:2023
- 资助金额:
$ 56.6万 - 项目类别:
Shared Resource Core 2: Clinical Artificial Intelligence Core
共享资源核心2:临床人工智能核心
- 批准号:
10712296 - 财政年份:2023
- 资助金额:
$ 56.6万 - 项目类别:
2023 Neurotrophic Mechanisms in Health and Disease
2023 健康与疾病中的神经营养机制
- 批准号:
10654336 - 财政年份:2023
- 资助金额:
$ 56.6万 - 项目类别: