Mining the phage playbook to create a potent, generic phage therapy

挖掘噬菌体剧本以创建有效的通用噬菌体疗法

基本信息

  • 批准号:
    10723647
  • 负责人:
  • 金额:
    $ 45.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-21 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Phage therapy, the practice of treating bacterial infections with bacteria-targeting viruses, bacteriophage (or phage), is a promising and urgently needed alternative to antibiotics. A major challenge holding this approach back from widespread adoption is that phage treatments need to be customized for the infecting strains in each patient, a slow and labor-intensive process. This requirement arises from the exquisitely narrow host-range that many phages display, even among closely related bacterial strains. A major factor driving phage host range is the immense collection of bacterial anti-phage immune mechanisms that are unevenly distributed across bacterial strains. However, the underlying molecular arms race between bacteria and phage has given rise to an equally impressive set of corresponding phage counter-defense pathways, and thus collectively phage have already evolved mechanisms by which to overcome most bacterial defenses. Similar to their bacterial counterparts, each phage strain encodes only a miniscule fraction of existing counter-defenses, thus explaining the narrow host-range of individual phages. Developing a phage treatment that could amass these naturally occurring phage solutions into a “super phage cocktail” would enable production of an off-the-shelf phage treatment with a greatly expanded species range and the ability to forestall bacterial resistance. Here, I propose developing a pipeline leveraging existing phage counter-defense mechanisms to create a powerful proof-of-principle phage cocktail for the opportunistic pathogen, Pseudomonas aeruginosa. To realize this vision, I will take an experimental genomic approach to map the immune system of clinically relevant P. aeruginosa isolates and thereby determine which bacterial defenses the phage will encounter during infections. I will then develop a powerful, high throughput screen to identify existing phage counter-defense mechanisms that can overcome these bacterial defenses. Finally, I will create a super phage cocktail encoding an extensive collection of counter-defense gene cassettes with the ability to infect a broad set of P. aeruginosa strains. These studies seek to leverage the existing biology underlying the bacterial-phage molecular arms race to overcome a major hurdle in the development of phage therapy. This work will provide unprecedented insight into the breadth and diversity of both bacterial immunity and phage counter-defenses and uncover a multitude of novel biological mechanisms to be characterized in future studies. The engineered phage cocktail also constitutes an innovative experimental system that can be used to answer fundamental questions about viral population diversity and evolution. This initial study will serve as the blue print for development of phage therapy for other multi-drug resistant opportunistic pathogens.
项目概要 噬菌体疗法,用针对细菌的病毒、噬菌体(或 噬菌体)是一种有前途且迫切需要的抗生素替代品,这是保持这种方法的一个主要挑战。 广泛采用后的一个问题是,噬菌体治疗需要针对每种感染菌株进行定制 这一要求源于极其狭窄的宿主范围。 许多噬菌体甚至在密切相关的细菌菌株中都表现出这是驱动噬菌体宿主的主要因素。 范围是分布不均匀的细菌抗噬菌体免疫机制的巨大集合 然而,细菌和噬菌体之间潜在的分子军备竞赛已经给出。 产生一组同样令人印象深刻的相应噬菌体反防御途径,从而共同 噬菌体已经进化出克服大多数细菌防御的机制。 作为细菌盟友,每种噬菌体菌株仅编码现有反防御的一小部分,因此 解释单个噬菌体的狭窄宿主范围。开发一种可以聚集这些噬菌体的噬菌体治疗方法。 将天然存在的噬菌体溶液转化为“超级噬菌体混合物”将能够生产现成的噬菌体 噬菌体处理大大扩大了物种范围并具有预防细菌耐药性的能力。 在这里,我建议开发一个利用现有噬菌体反防御机制的管道来创建一个 针对机会性病原体铜绿假单胞菌的强大原理证明噬菌体混合物。 为了实现这一愿景,我将采用实验性基因组方法来绘制临床相关疟原虫的免疫系统图谱。 铜绿假单胞菌分离并确定噬菌体在感染过程中将遇到哪些细菌防御。 然后我将开发一个强大的高通量筛选来识别现有的噬菌体反防御机制 最后,我将创建一种编码广泛的超级噬菌体混合物。 能够感染多种铜绿假单胞菌菌株的反防御基因盒的集合。 这些研究试图利用细菌-噬菌体分子军备竞赛背后的现有生物学原理来 这项工作将克服噬菌体疗法发展中的一个主要障碍。 深入了解细菌免疫和噬菌体反防御的广度和多样性,并揭示大量 工程噬菌体混合物也将在未来的研究中得到表征。 构成了一个创新的实验系统,可用于回答有关病毒的基本问题 这项初步研究将作为噬菌体开发的蓝图。 治疗其他多重耐药机会性病原体。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michele LeRoux其他文献

Michele LeRoux的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

多环芳烃影响大肠杆菌抗生素耐药性进化的分子机制
  • 批准号:
    32301424
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
靶向铜绿假单胞菌FpvA蛋白的铁载体偶联抗生素克服细菌耐药性及作用机制研究
  • 批准号:
    82304313
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
乙醇脱氢酶AdhB介导肺炎链球菌抗生素耐药性的机制研究
  • 批准号:
    32300154
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
鸭肠道菌群抗生素耐药性分布及替抗噬菌体内溶素鉴定研究
  • 批准号:
    32360830
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
消毒剂-抗生素循环压力下鲍曼不动杆菌耐药性演变及其作用机制
  • 批准号:
    82273586
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

A Randomized Pilot and Feasibility Study of a cultuRE-Directed approach to Urinary traCT Infection symptoms in older womeN: a mixed methods evaluation - the REDUCTION trial
针对老年女性尿路感染症状的文化导向方法的随机试验和可行性研究:混合方法评估 - REDUCTION 试验
  • 批准号:
    10586250
  • 财政年份:
    2023
  • 资助金额:
    $ 45.86万
  • 项目类别:
Real-Time High Resolution Method for Genomic Surveillance of ESKAPE pathogens
ESKAPE 病原体基因组监测的实时高分辨率方法
  • 批准号:
    10440946
  • 财政年份:
    2022
  • 资助金额:
    $ 45.86万
  • 项目类别:
Real-Time High Resolution Method for Genomic Surveillance of ESKAPE pathogens
ESKAPE 病原体基因组监测的实时高分辨率方法
  • 批准号:
    10620361
  • 财政年份:
    2022
  • 资助金额:
    $ 45.86万
  • 项目类别:
Eye-Path Resubmission
眼路重新提交
  • 批准号:
    10480705
  • 财政年份:
    2022
  • 资助金额:
    $ 45.86万
  • 项目类别:
Using Implementation Science and Informatics to Develop and Pilot Test Antibiotic Stewardship Clinical Decision Support
利用实施科学和信息学来开发和试点测试抗生素管理临床决策支持
  • 批准号:
    10560475
  • 财政年份:
    2021
  • 资助金额:
    $ 45.86万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了