Biogenesis of alpha-helical mitochondrial outer membrane proteins in higher eukaryotes
高等真核生物中α螺旋线粒体外膜蛋白的生物发生
基本信息
- 批准号:10723598
- 负责人:
- 金额:$ 12.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:Alzheimer&aposs DiseaseApoptosisAwardBindingBiochemicalBiochemistryBiogenesisBioinformaticsBiological AssayCCL21 geneCell physiologyCellsCellular StressCellular biologyCollaborationsCommunicationComplexCytoplasmDataDevelopmentDiseaseEukaryotaEvolutionFamilyFoundationsFutureGeneticGenomeGoalsHomeostasisHomologous GeneHumanHydrophobicityIn VitroInnate Immune ResponseKnowledgeKnowledge acquisitionLearningLifeLipid BilayersLipidsMalignant NeoplasmsMammalian CellMammalsMapsMediatingMembraneMembrane ProteinsMentorsMetabolismMitochondriaMitochondrial Membrane ProteinMitochondrial ProteinsMolecularMutagenesisNeurodegenerative DisordersNuclearOrganellesOrganismOrthologous GeneOutcomeOuter Mitochondrial MembraneParkinson DiseasePathway interactionsPharmacologic SubstancePhasePhysiologicalPhysiologyPlayPositioning AttributePostdoctoral FellowProcessProductionProteinsProteomeResearchRoleRouteSignal TransductionSiteTechniquesTestingTimeTransmembrane DomainWorkalpha helixbiochemical toolsbiophysical propertiescareercrosslinkfunctional genomicsgenome wide screengenomic toolshuman diseasehydrophilicityin vitro Assayin vivoinsightmembermembrane biogenesismitochondrial membranenovelperoxisomeprogramsskill acquisitionskillssolutetherapy development
项目摘要
Project Summary/Abstract
Mitochondria are essential organelles of endosymbiotic origin which have evolved to play critical roles in
eukaryotic physiology. Mitochondrial activity is dependent on proteins embedded in the outer mitochondrial
membrane (OMM), which mediate mitochondrial-cytoplasmic communication, and critical aspects of cellular
function such as apoptosis and the innate immune response. a-helical proteins are an important subset of
OMM proteins. However, how they get inserted into the lipid bilayer of the OMM in mammalian cells has until
recently been unclear.
Work by myself, in collaboration with Rebecca Voorhees and Jonathan Weissman’s labs, has identified
the OMM resident protein MTCH2, a defining member of a novel family of insertases, as both necessary and
sufficient for the insertion of a-helical proteins into the OMM. MTCH2 is a diverged member of the solute
carrier family 25 (SLC25), and has evolved to exploit the canonical transporter fold for insertion. Bioinformatic
analysis reveals that MTCH2 has a homolog in peroxisomes, and orthologs across holozoa, suggesting a
common mechanism for a-helical protein insertion across membranes and eukaryotes.
Building on this finding, this proposal aims to develop a comprehensive understanding of how a-helical
proteins are correctly targeted to the OMM and inserted into the lipid bilayer across eukaryotes. This work will
address a fundamental question in cell biology, as the OMM proteome has evolved to support increasingly
more complex functions in higher eukaryotes. a-helical proteins are defined by the presence of one or more
transmembrane domains (TAs), though their TMs can vary significantly in number and a range of biophysical
characteristics such as hydrophobicity. This proposal aims to first develop a deeper understanding of MTCH2
function. First, in vivo and biochemical techniques will be combined to map the route a substrate TM takes
through MTCH2 into the lipid bilayer, directly testing whether MTCH2’s conserved hydrophilic groove has a
direct role in this process. Second, this work will establish whether structural homologs of MTCH2 have
retained their insertase ability across eukaryotes.
The biochemical skills and knowledge acquired by defining the molecular basis for MTCH2 will be
combined with systematic functional genomics to establish how a-helical proteins get targeted to the OMM,
and whether other factors besides MTCH2 are required to support the biogenesis of this diverse class.
Cumulatively, this proposal will provide important insights into the mechanisms that have evolved to support
eukaryotic life. Further, intimate knowledge of the machinery that governs a-helical OMM protein insertion will
be critical for developing new treatments associated with outer mitochondrial membrane protein dysregulation,
including neurodegenerative diseases such as Parkinson’s and Alzheimer’s.
项目概要/摘要
线粒体是内共生起源的重要细胞器,它已进化到在
真核生理学依赖于嵌入线粒体外层的蛋白质。
膜(OMM),介导线粒体-细胞质通讯以及细胞的关键方面
细胞凋亡和先天免疫反应等功能是重要的子集。
然而,OMM 蛋白如何插入哺乳动物细胞中的 OMM 脂质双层中仍然未知。
最近不太清楚。
我与丽贝卡·沃里斯 (Rebecca Voorhees) 和乔纳森·韦斯曼 (Jonathan Weissman) 的实验室合作,确定了
OMM 驻留蛋白 MTCH2 是新型插入酶家族的定义成员,既是必需的又是
足以将α-螺旋蛋白插入OMM中,MTCH2是溶质的分歧成员。
载体家族 25 (SLC25),并已进化为利用经典转运蛋白折叠进行插入。
分析表明,MTCH2 在过氧化物酶体中具有同源物,并且在 holozoa 中具有直系同源物,这表明
α-螺旋蛋白跨膜和真核生物插入的常见机制。
基于这一发现,该提案旨在全面了解α-螺旋如何
这项工作将正确地将蛋白质靶向 OMM 并插入真核生物的脂质双层中。
解决细胞生物学中的一个基本问题,因为 OMM 蛋白质组已经发展到支持越来越多的
高等真核生物中更复杂的功能是由一个或多个α螺旋蛋白的存在来定义的。
跨膜结构域 (TA),尽管它们的 TM 在数量和生物物理范围上可能存在显着差异
该提案旨在首先加深对 MTCH2 的了解。
首先,将结合体内和生化技术来绘制底物TM的路径。
通过MTCH2进入脂双层,直接测试MTCH2的保守亲水沟是否具有
其次,这项工作将确定 MTCH2 的结构同源物是否具有直接作用。
它们在真核生物中保留了插入酶能力。
通过定义 MTCH2 的分子基础获得的生化技能和知识将是
与系统功能基因组学相结合,确定α-螺旋蛋白如何靶向 OMM,
以及除了 MTCH2 之外是否还需要其他因素来支持这一多样化类别的生物发生。
总的来说,该提案将为支持机制的发展提供重要的见解。
此外,对控制α-螺旋 OMM 蛋白插入的机制的深入了解将有助于了解真核生命。
开发与线粒体外膜蛋白失调相关的新疗法至关重要,
包括帕金森氏症和阿尔茨海默氏症等神经退行性疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALINA-IOANA GUNA其他文献
ALINA-IOANA GUNA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
黄蜀葵花通过m6A修饰靶向调控坏死性凋亡信号通路改善糖尿病肾脏疾病炎症性足细胞损伤分子机制的研究
- 批准号:82374364
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
工程化外泌体通过递送siRIPK3抑制肺泡巨噬细胞坏死性凋亡改善ARDS的疾病进展
- 批准号:82300104
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
S100A9通过TLR4信号通路诱导巨噬细胞凋亡促使肺结核疾病进展的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
METTL16通过介导pri-miR-511m6A修饰调控慢性阻塞性肺疾病肺泡上皮细胞凋亡及自噬的机制研究
- 批准号:82160014
- 批准年份:2021
- 资助金额:34 万元
- 项目类别:地区科学基金项目
FOXO4的巯基亚硝基化修饰调控细胞衰老与凋亡信号相互转变的机理研究及其在衰老相关心血管疾病中的应用
- 批准号:82070507
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
PET Tracer for Imaging of Lung Inflammation
用于肺部炎症成像的 PET 示踪剂
- 批准号:
10682270 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Diversity Supplement - Progranulin, Prosaposin and Lipid Biology in FTD
多样性补充 - FTD 中的颗粒体蛋白前体、前塞波辛和脂质生物学
- 批准号:
10734455 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Impact of phagocytosis on amyloid beta-induced pathology
吞噬作用对β淀粉样蛋白诱导的病理学的影响
- 批准号:
10724363 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
TBI leads to degeneration of afferent neuronal projections
TBI 导致传入神经元投射退化
- 批准号:
10660379 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Virus and olfactory system interactions accelerate Alzheimer's disease pathology
病毒和嗅觉系统相互作用加速阿尔茨海默病病理学
- 批准号:
10669880 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别: