3D Methodology for Interpreting Disease-Associated Genomic Variation in RAG2
解释 RAG2 中疾病相关基因组变异的 3D 方法
基本信息
- 批准号:10724152
- 负责人:
- 金额:$ 15.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdultAffinityAwardB cell repertoireB-Cell DevelopmentB-LymphocytesBasic ScienceBindingBiochemicalBiochemistryChromatinComplexComputational TechniqueDNADNA Sequence AlterationDataDevelopmentDiagnosisDimensionsDiseaseEnzymesEvaluationFollow-Up StudiesFunctional disorderFutureGene ActivationGene MutationGenerationsGenesGeneticGenetic DatabasesGenetic DiseasesGenetic RecombinationGenetic VariationGenomeGenomicsHealthHereditary DiseaseHistonesHumanHuman GeneticsImmuneImmune ToleranceImmune systemImmunityImmunologic Deficiency SyndromesIn VitroIndividualInfectionInterventionJointsLymphocyteLymphoidMeasuresMechanicsMethodologyMethodsMethylationModelingMolecularMutateMutationNucleosome Core ParticlePH DomainPathogenesisPatientsPeptide Signal SequencesPeptidesPhenotypePlantsPopulation DatabasePopulation GeneticsPredispositionPropertyProteinsRag1 MouseReactionReadingResearchResolutionSevere Combined ImmunodeficiencyStructureStructure-Activity RelationshipSubgroupSystemT-LymphocyteTailTestingVariantadaptive immunitycancer cellcomputerized toolsgain of functiongene functiongenetic variantgenomic variationhomeodomainimprovedinnovationloss of functionmachine learning classifiermolecular mechanicsmolecular modelingmonomermultidisciplinarynegative affectnext generationnovelnovel strategiesprecision medicineprotein structure functionrecombinasestructural biologythermostabilitytoolvariant of unknown significance
项目摘要
PROJECT SUMMARY
The current proposal seeks to advance mechanisms of interpretation of genomic variation found in RAG2. We
leverage advanced computational techniques with existing and new experimental data, to develop a novel
approach for characterizing and interpreting inter-individual genetic variation, and mutations observed in patients
with immunodeficiency syndromes. Our central hypothesis is that structural calculations predict functional
changes for RAG2 mutations via capture of specific biochemical and molecular mechanic features. Our approach
investigates RAG2 mutations in a domain-specific manner, where each Aim investigates one of the two RAG2
structured domains: 1) we interrogate the effects of β-domain mutations on the RAG heterotetramer complex
across its enzymatic cycle; 2) we computationally and functionally characterize how mutations in the plant
homeodomain alter stability and chromatin binding capacity. Thus, between the two domains, we will investigate
alteration of the RAG enzyme and its ability to be regulated by differentially targeting to the correct places in the
genome, via its histone reading function. Our Aims are independent (using different approaches for different
domains), yet synergistic due to each providing new information about RAG2 mutations observed in
immunodeficiency patients. Both domains will be characterized in structure-dynamics-function paradigm, to
elucidate details for each mutation in high-resolution, and to identify subgroups of mutations that have similar
effects on RAG function. The subgroups we anticipate identifying will serve for follow-up studies into cellular
effects and how to potentially address each type of dysfunction. When completed, the proposed studies will
generate new data with clear biomedical relevance for diagnosis of immunodeficiency syndromes and enabling
future research in how to differently address each group of mutations that modulate specific dimensions of RAG
complex function. At a higher level, our proposal addresses a broad unmet need in genomics for new
computational approaches to mechanistically interpret the wide landscape of human variation. We anticipate that
the approach used here, will be generalizable to other proteins for how the computational tools can be applied
in a robust manner to determine the underlying protein structure-function relationship for interpreting the
structural biology of genetic disease pathogenesis. The data generated in this pilot award will thereby seed future
applications by the current scientific and multi-disciplinary team, to further expand our understanding of RAG
genetic variation and its effects on the immune system.
项目概要
当前的提案旨在推进 RAG2 基因组变异的解释机制。
利用先进的计算技术与现有和新的实验数据,开发一种新颖的
表征和解释个体间遗传变异以及在患者中观察到的突变的方法
我们的中心假设是结构计算预测功能。
我们的方法是通过捕获特定的生化和分子力学特征来改变 RAG2 突变。
以域特异性方式研究 RAG2 突变,其中每个目标研究两个 RAG2 之一
结构域:1)我们探讨 β 结构域突变对 RAG 异四聚体复合物的影响
整个酶循环;2)我们通过计算和功能描述了植物中的突变方式
同源结构域会改变稳定性和染色质结合能力,因此,我们将研究这两个结构域之间的关系。
RAG 酶的改变及其通过差异靶向正确位置来调节的能力
基因组,通过其组蛋白读取功能,我们的目标是独立的(针对不同的情况使用不同的方法)。
域),但由于每个域都提供了有关 RAG2 突变的新信息,因此具有协同作用
免疫缺陷患者的两个领域都将在结构-动力学-功能范式中进行表征,以
以高分辨率阐明每个突变的详细信息,并识别具有相似特征的突变亚组
我们预计确定的亚组将用于细胞的后续研究。
影响以及如何潜在地解决每种类型的功能障碍 完成后,拟议的研究将。
生成具有明确生物医学相关性的新数据,用于诊断免疫缺陷综合征并启用
未来研究如何以不同的方式解决调节 RAG 特定维度的每组突变
在更高的层面上,我们的建议解决了基因组学中对新功能的广泛未满足的需求。
我们预计,机械地解释人类变异的广泛景观的计算方法。
这里使用的方法将推广到其他蛋白质,以了解如何应用计算工具
以稳健的方式确定潜在的蛋白质结构-功能关系以解释
该试点奖项中产生的数据将为遗传疾病发病机制的结构生物学奠定基础。
当前科学和多学科团队的应用,进一步扩大我们对 RAG 的理解
遗传变异及其对免疫系统的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael T Zimmermann其他文献
Cancer-associated polybromo-1 bromodomain 4 missense variants variably impact bromodomain ligand binding and cell growth suppression
癌症相关的polybromo-1 bromodomain 4错义变体不同程度地影响bromodomain配体结合和细胞生长抑制
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:4.8
- 作者:
Karina L. Bursch;C. Goetz;Guanming Jiao;Raymundo Nuñez;Michael D. Olp;Alisha Dhiman;Mallika Khurana;Michael T Zimmermann;Raul A. Urrutia;Emily C. Dykhuizen;Brian C Smith - 通讯作者:
Brian C Smith
Michael T Zimmermann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 15.6万 - 项目类别:
A Gene-Network Discovery Approach to Structural Brain Disorders
结构性脑疾病的基因网络发现方法
- 批准号:
10734863 - 财政年份:2023
- 资助金额:
$ 15.6万 - 项目类别:
Examining the Role of Social Connection in Suicide Risk for Older Autistic Adults: A Mixed Methods Study
检查社会联系在老年自闭症成人自杀风险中的作用:一项混合方法研究
- 批准号:
10727637 - 财政年份:2023
- 资助金额:
$ 15.6万 - 项目类别:
Dual-Venc 5D flow for Assessment of Congenital Heart Disease in Pediatrics
Dual-Venc 5D 流程用于评估儿科先天性心脏病
- 批准号:
10679809 - 财政年份:2023
- 资助金额:
$ 15.6万 - 项目类别:
Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
- 批准号:
10679796 - 财政年份:2023
- 资助金额:
$ 15.6万 - 项目类别: