Novel Algorithmic Fairness Tools for Reducing Health Disparities in Primary Care
用于减少初级保健健康差异的新颖算法公平工具
基本信息
- 批准号:10676234
- 负责人:
- 金额:$ 32.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-03 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsChronic Kidney FailureCommunitiesComprehensive Health CareDataData ScienceData SetData SourcesDevelopmentDisparityEquilibriumEquityEthicsEthnic PopulationGeographyGoalsGrantHealthHealth Services AccessibilityHealth systemHealthcareHealthcare SystemsIndividualInequityInstitute of Medicine (U.S.)KnowledgeLiteratureMeasurementMeasuresMethodologyMethodsOutcomePatient CarePerformancePhasePopulation HeterogeneityPrimary CareProcessPublic HealthQuality of CareReduce health disparitiesReproducibilityResearchSaranSpecific qualifier valueStatistical MethodsTechniquesTestingUnited StatesUnited States National Library of MedicineWorkadaptive learningalgorithm developmentalgorithmic biasbiomedical informaticscare coordinationclinical carecomputerized toolsdata registrydata resourcedesigndisparity reductionethnic diversityethnic health disparityethnic minorityexperimental studyflexibilityhealth care deliveryhealth care disparityhealth care settingshealth datahealth disparityhealth equityhealth outcome disparityimprovedinnovationinsightinterestmarginalizationmarginalized populationnovelopen sourceopen source toolperformance testspoor health outcomeprocess optimizationracial disparityracial diversityracial minorityracial populationracismrural areasimulationsocial health determinantssocioeconomicsstatistical learningtooltreatment as usual
项目摘要
PROJECT SUMMARY: Disparities in the health care system are substantial, leading to worse health outcomes
and quality of care for marginalized groups. These disparities reflect that our current health system has an
inequitable equilibrium. Imbedded within health care data are societal biases, including racism and barriers in
access to care for individuals from low socioeconomic backgrounds and rural areas. However, many
algorithmic approaches are inadequate for addressing health disparities because the algorithms do not
evaluate or optimize performance in these groups. Existing tools to ameliorate differential performance for
multiple marginalized groups in realistic health care settings are extremely limited. Our innovative approach to
the data and algorithmic bias problems in health disparities is to create a first-of-its-kind overarching
algorithmic fairness framework for multiple marginalized groups. In the initial phase, we will focus on data
transformations—intervening on the data in order to ‘de-bias’ it to represent a desired equilibrium rather than
reinforcing the unfair equilibrium. The second stage builds novel fair regression estimators to enforce fairness
constraints for prediction. Our goal is to create reusable tools that advance the equitable provision of health
care. We will accomplish this by developing generalizable methodology that follows an ethical pipeline for
algorithms guided by a social determinants of health framework. Our specific aims are to: (1) develop and test
novel data transformation methods that rely on microsimulations for de-biasing health care data, (2) develop
and test new fair penalized regression approaches optimized for multiple groups, (3) test the performance of
the new algorithmic framework for a high-impact primary care application in chronic kidney disease prioritizing
fairness for multiple racial and ethnic groups facing health disparities, and (4) create open-source
computational tools, tutorial vignettes, and a synthetic data resource for reproducible research and
dissemination. The proposed research will yield a statistically innovative reusable algorithmic fairness
framework unifying data transformations and fair regression to reduce health disparities with robust testing in a
chronic kidney disease study of quality of care. This primary care application will leverage rich registry data,
including measurements of social determinants of health, collected in usual care settings from a
geographically, racially, and ethnically diverse population across multiple payers. Our approach centers
robustness with rigorous methodological design, including comparisons to alternative existing estimators and
standard practice in comprehensive simulation studies and national, real-world registry data. Addressing health
disparities in primary care—a hub of continuous, coordinated care—has the potential for substantial impact on
improving public health via the health care system. The broad applicability of our framework and creation of
reusable computational tools will facilitate deployment in many practical settings.
项目摘要:医疗保健系统的差异巨大,导致健康结果更差
这些差异反映了我们当前的卫生系统存在的问题。
医疗保健数据中隐藏着社会偏见,包括种族主义和障碍。
来自低社会经济背景和农村地区的个人获得护理的机会 然而,许多人都无法获得护理。
算法方法不足以解决健康差异,因为算法不能
评估或优化这些组中的现有工具以改善差异性能。
在现实的医疗保健环境中,我们的创新方法极其有限。
健康差异中的数据和算法偏差问题是要创建一个史无前例的总体
针对多个边缘群体的算法公平框架 在初始阶段,我们将关注数据。
转换——对数据进行干预,以使其“去偏”以代表期望的平衡,而不是
第二阶段构建新颖的公平回归估计器以加强公平性。
我们的目标是创建可重复使用的工具,以促进公平地提供卫生服务。
我们将通过开发遵循道德管道的通用方法来实现这一目标。
由健康社会决定因素框架指导的算法我们的具体目标是:(1)开发和测试。
依赖微观模拟来消除医疗保健数据偏差的新颖数据转换方法,(2) 开发
并测试针对多个组优化的新公平惩罚回归方法,(3)测试性能
用于慢性肾病优先的高影响力初级保健应用的新算法框架
为面临健康差异的多个种族和族裔群体提供公平性,以及 (4) 创建开源
计算工具、教程插图和用于可重复研究的合成数据资源
所提出的研究将产生专业创新的可重用算法公平性。
统一数据转换和公平回归的框架,通过可靠的测试来减少健康差异
慢性肾病护理质量研究该初级保健应用程序将利用丰富的注册数据,
包括对健康的社会决定因素的测量,这些测量是在常规护理环境中从
我们的服务中心涵盖多个付款人的地理、种族和族裔背景。
严格方法设计的稳健性,包括与替代现有估计器的比较和
综合模拟研究和国家真实世界登记数据的标准做法。
初级保健(持续、协调的护理中心)的差异可能会对
通过医疗保健系统改善公共卫生。我们的框架和创建的广泛适用性。
可重复使用的计算工具将有助于在许多实际环境中进行部署。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sherri Rose其他文献
Sherri Rose的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sherri Rose', 18)}}的其他基金
Novel Algorithmic Fairness Tools for Reducing Health Disparities in Primary Care
用于减少初级保健健康差异的新颖算法公平工具
- 批准号:
10416957 - 财政年份:2022
- 资助金额:
$ 32.38万 - 项目类别:
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
强磁场作用下两相铁磁流体动力学相场模型的高精度数值算法研究
- 批准号:12361074
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
相似海外基金
Small Molecule Therapeutics for Sickle Cell Anemia
镰状细胞性贫血的小分子疗法
- 批准号:
10601679 - 财政年份:2023
- 资助金额:
$ 32.38万 - 项目类别:
Quantitative Normalization of Spatial Metabolomics for Molecular Signatures of Tissue Heterogeneity
组织异质性分子特征的空间代谢组学定量标准化
- 批准号:
10603667 - 财政年份:2023
- 资助金额:
$ 32.38万 - 项目类别:
Implementation of Eplet Mismatch Analysis in Pediatric Kidney Transplantation
Eplet 错配分析在小儿肾移植中的实施
- 批准号:
10739126 - 财政年份:2023
- 资助金额:
$ 32.38万 - 项目类别:
Minimally-invasive technology for personalized nutritional monitoring
用于个性化营养监测的微创技术
- 批准号:
10693521 - 财政年份:2023
- 资助金额:
$ 32.38万 - 项目类别: