Identifying novel regulators of the biogenesis and intracellular trafficking of ApoB lipoproteins
鉴定 ApoB 脂蛋白生物发生和细胞内运输的新型调节因子
基本信息
- 批准号:10671051
- 负责人:
- 金额:$ 7.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:ARNT geneAffectAllelesAnimal ModelApolipoproteins BAppearanceAtherosclerosisBiogenesisBiological ProcessBiologyCell Culture TechniquesClustered Regularly Interspaced Short Palindromic RepeatsCollagenComplexDarknessDefectDepositionDiameterDrosophila genusDyslipidemiasElectron MicroscopyEmbryoEmbryonic DevelopmentEnvironmentEthylnitrosoureaExhibitsFamilyFishesGenerationsGenesGenetic Complementation TestGenetic ScreeningGenetic TranscriptionGoalsGolgi ApparatusImageIntestinesInvestigationKnowledgeLabelLarvaLipid MobilizationLipidsLipoproteinsLiverLocationMapsMetabolic syndromeMetabolismMonitorMutagenesisMutationOpticsOrganParticle SizePathologyPathway interactionsPhenotypePlayPopulationProductionProteinsRegulationReporterResearch PersonnelRoleStudy modelsTestingTissuesTransgenic OrganismsVesicleVisualizationWhole OrganismYeastsYolk SacZebrafishexperimental studyforward geneticsgenetic manipulationlight microscopylight transmissionlipid metabolismlipid transportmicrosomal triglyceride transfer proteinmutantnovelparticlescreeningtraffickingtraining opportunitytranscription factortranscriptometranscriptome sequencing
项目摘要
PROJECT SUMMARY - Metabolic syndrome affects up to 1/3 of the US population and is associated with
dyslipidemia. In liver and intestine, lipid is catabolized, incorporated into complex lipids, stored in lipid droplets,
or secreted as ApoB-containing lipoproteins (B-lps). Lipoprotein biogenesis plays a key role in governing cellular
lipid flux in digestive organs; however, we have a poor understanding of the factors controlling B-lp capacity
(size), secretion, and subcellular location(s) of lipidation. These knowledge gaps have been difficult to investigate
due to the limitations of cell culture models for studying multi-organ phenomena and the relative inaccessibility
of mammalian whole-animal models to visualize lipoprotein dynamics at the subcellular level. The zebrafish
presents a unique solution to these challenges – in the embryonic and larval stages, the zebrafish robustly
produces B-lps using genetically conserved pathways, is optically clear enabling imaging on the subcellular to
whole-organism scale, and is amenable to genetic manipulation. In the developing larva, maternally deposited
yolk lipid is packaged into B-lps by microsomal triglyceride transfer protein (MTP) in the yolk syncytial layer (YSL)
and then secreted for distribution to other tissues. Larvae deficient in MTP inefficiently mobilize lipid resulting in
abnormal lipid storage that reduces light transmission, giving the yolk sac a dark appearance that is easily
identified by low-magnification light microscopy. Our lab was the first to characterize the B-lp biology of the “dark
yolk” phenotype and has identified several genes with known and unknown roles in lipoprotein biogenesis.
mia2/ctage5 mutants were recently found to exhibit the dark-yolk phenotype. The protein product of mia2/ctage5,
Tango-like (TALI), may facilitate the formation of large diameter COPII vesicles to transport large B-lp cargos
from the ER to the Golgi. I observe that B-lps in mia2/ctage5 deficient fish are almost exclusively small in
diameter suggesting mia2/ctage5 plays a key role in regulating B-lp size. In aim 1, I will test the hypothesis that
TALI preferentially interacts with large B-lps using transgenic zebrafish lines and a proximity labeling approach.
Further, to test the hypothesis that mia2/ctage5 indirectly regulates B-lp size by modulating transcriptional
pathways, I will monitor the transcriptome by RNAseq and by targeted analysis of lipid-related, COPII-dependent
transcription factors. In aim 2, I will exploit the dark-yolk phenotype to uncover novel regulators of B-lp
metabolism by conducting a forward genetic mutagenesis screen. Dark-yolk families will be characterized for
defects in B-lp metabolism using transgenic ApoB reporter zebrafish and electron microscopy. High priority
alleles will be mapped and further investigated for defects in lipid metabolism. By defining the role of mia2/ctage5
in regulating B-lp size and number and by identifying novel regulators of lipoprotein production, I will broaden
our understanding of lipoprotein biogenesis and related pathologies. The experiments proposed, mutants
discovered, training opportunities provided, and rigorous academic environment of the Farber Lab and Carnegie
will support my long-term goal of becoming an independent investigator.
项目摘要 - 代谢综合征最多影响美国人口的1/3,并且与
血脂血症。在肝脏和肠中,脂质被分解代谢,掺入复杂脂质中,存储在脂质液滴中,
或分泌为含APOB的脂蛋白(B-LPS)。脂蛋白生物发生在控制细胞中起关键作用
消化器官中的脂质通量;但是,我们对控制B-LP容量的因素的了解很差
(尺寸),分泌和亚细胞位置(S)。这些知识差距很难调查
由于细胞培养模型的局限
哺乳动物的全动物模型可视化亚细胞水平的脂蛋白动力学。斑马鱼
为这些挑战提供了一个独特的解决方案 - 在胚胎和幼虫阶段,斑马鱼稳健
使用一般配置的途径产生B-LPS,是在光学上启用成像的光学上的成像
全体生物量表,并且适合基因操纵。在发展中的幼虫中,主要存入
通过微粒体甘油三酸酯转移蛋白(MTP)将蛋黄脂质包装到B-LPS中
然后分泌以分配到其他组织。幼虫缺乏MTP效率低下,动员脂质,导致脂质
异常的脂质存储,可降低光传输,使蛋黄囊具有简单的黑暗外观
通过低磁化光显微镜鉴定。我们的实验室是第一个表征“黑暗的B-LP生物学”
蛋黄”表型,并鉴定了几种在脂蛋白生物发生中具有已知和未知作用的基因。
最近发现MIA2/CTAGE5突变体表现出深色纱表型。 MIA2/CTAGE5的蛋白质产物,
探戈(Tano)(tali),可能有助于形成大直径Copii蔬菜以运输大型B-LP cargos
从急诊室到高尔基。我观察到MIA2/CTAGE5中缺乏鱼类的B-LPS几乎完全很小
直径表明MIA2/CTAGE5在调节B-LP大小中起关键作用。在AIM 1中,我将检验以下假设
Tali使用转基因斑马鱼线和接近标记方法优先与大B-LPS相互作用。
此外,为了测试MIA2/CTAGE5间接调节B-LP大小的假设
途径,我将通过RNASEQ监视转录组,并通过针对脂质相关的COPII依赖性分析
转录因子。在AIM 2中,我将利用深色Yolk表型来发现B-LP的新型调节剂
通过进行正向遗传诱变筛选来代谢。深色雅克家庭将被描述为
使用转基因APOB报告基因斑马鱼和电子显微镜的B-LP代谢缺陷。优先级
等位基因将进行映射,并进一步研究脂质代谢缺陷。通过定义MIA2/ctage5的作用
在调节B-LP的大小和数量以及通过识别脂蛋白产生的新调节剂时,我将扩大
我们对脂蛋白生物发生和相关病理的理解。提出的实验,突变体
发现的,提供的培训机会以及Farber Lab和Carnegie的严格学术环境
将支持我成为独立调查员的长期目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
McKenna Rae Feltes其他文献
McKenna Rae Feltes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('McKenna Rae Feltes', 18)}}的其他基金
Identifying novel regulators of the biogenesis and intracellular trafficking of ApoB lipoproteins
鉴定 ApoB 脂蛋白生物发生和细胞内运输的新型调节因子
- 批准号:
10526282 - 财政年份:2021
- 资助金额:
$ 7.18万 - 项目类别:
Identifying novel regulators of the biogenesis and intracellular trafficking of ApoB lipoproteins
鉴定 ApoB 脂蛋白生物发生和细胞内运输的新型调节因子
- 批准号:
10314442 - 财政年份:2021
- 资助金额:
$ 7.18万 - 项目类别:
相似国自然基金
KIR3DL1等位基因启动子序列变异影响其差异表达的分子机制研究
- 批准号:82200258
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
KIR3DL1等位基因启动子序列变异影响其差异表达的分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NUP205双等位基因突变影响纤毛发生而致内脏转位合并先天性心脏病的机理研究
- 批准号:82171845
- 批准年份:2021
- 资助金额:54.00 万元
- 项目类别:面上项目
NUP205双等位基因突变影响纤毛发生而致内脏转位合并先天性心脏病的机理研究
- 批准号:
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
全基因组范围内揭示杂交肉兔等位基因特异性表达模式对杂种优势遗传基础的影响
- 批准号:32102530
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Molecular and genetic basis of deep venous thrombosis
深静脉血栓形成的分子和遗传学基础
- 批准号:
10460687 - 财政年份:2021
- 资助金额:
$ 7.18万 - 项目类别:
Identifying novel regulators of the biogenesis and intracellular trafficking of ApoB lipoproteins
鉴定 ApoB 脂蛋白生物发生和细胞内运输的新型调节因子
- 批准号:
10526282 - 财政年份:2021
- 资助金额:
$ 7.18万 - 项目类别:
Identifying novel regulators of the biogenesis and intracellular trafficking of ApoB lipoproteins
鉴定 ApoB 脂蛋白生物发生和细胞内运输的新型调节因子
- 批准号:
10314442 - 财政年份:2021
- 资助金额:
$ 7.18万 - 项目类别:
Molecular and genetic basis of deep venous thrombosis
深静脉血栓形成的分子和遗传学基础
- 批准号:
10200879 - 财政年份:2018
- 资助金额:
$ 7.18万 - 项目类别:
Molecular and genetic basis of deep venous thrombosis
深静脉血栓形成的分子和遗传学基础
- 批准号:
10225228 - 财政年份:2018
- 资助金额:
$ 7.18万 - 项目类别: