Hippocampo-cortical circuit mechanisms of neuronal sequences during learning
学习过程中神经元序列的海马皮质回路机制
基本信息
- 批准号:10669619
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:Alzheimer&aposs DiseaseAnatomyAreaBehaviorBehavior ControlBehavioralBrainBrain DiseasesBrain regionCellsCodeComplexCortical SynchronizationDataDecision MakingDiseaseDorsalEventFutureGenerationsGoalsHippocampusImpairmentIndividualInheritedIntellectual functioning disabilityInterneuronsInterventionKnowledgeLaboratoriesLeadLearningLightLinkMachine LearningMapsMediatingMemoryMemory impairmentMethodsMusNeocortexNeuronsPatternPerformancePhasePhysiologicalPopulationPrefrontal CortexProcessRattusResearchResearch Project GrantsRoleSchizophreniaShort-Term MemorySiliconSleepSpace PerceptionSpatial BehaviorStructureSynapsesTechniquesTestingTrainingTransgenic MiceViralcell assemblyexperienceexperimental studygoal oriented behaviorimprovedinnovationinsightmemory consolidationneocorticalneuralneural circuitneural patterningnoveloptogeneticsskillsspatial memorytransmission process
项目摘要
PROJECT SUMMARY
The goal of this project is to understand the circuit mechanisms underlying neuronal sequence coordination across
hippocampus and neocortex and their role in learning and memory. Cells that participated in a recent experience are
reactivated in the form of ordered sequences that recapitulate behavior in a temporally compressed manner. These
reactivations are coordinated by synchronous network events known as sharp-wave ripples (SWRs) that originate in the
hippocampus and propagate to the neocortex. It has been proposed that SWRs and associated neuronal sequences mediate
memory consolidation, planning and learning but a direct proof of these functions is still lacking. Additionally, several brain
disorders characterized by learning and memory deficits have been related to disrupted SWRs. To guide behavior and
decision making, the neocortex is believed to generalize across individual experiences encoded in the hippocampus to infer
environmental regularities and rules. SWRs entrain neocortical activity, but how downstream cortical areas read out the
hippocampal code transmitted during SWRs and use this information to guide goal-oriented behavior is unknown.
I will perform silicon probe recordings and optogenetic manipulations in the hippocampus and its main cortical
target regions of behaving rats and mice to test the functional role and circuit mechanisms of SWR sequences during the
different phases of goal-oriented behavior. First, I will use a novel optogenetic approach for closed-loop manipulation of
SWRs to directly test whether SWRs associated sequences support memory-guided behavior. My preliminary data
supports the hypothesis that SWRs became longer with increased memory demands thus allowing extended replay events,
and that those prolonged sequences are necessary and sufficient for memory-guided navigation and spatial learning. Second,
I will examine the impact of SWRs on downstream cortical targets, in the context of goal-oriented spatial behavior. I will
test if there is a specific functional topography of hippocampo-cortical interactions, with dorsal and ventral hippocampal
SWRs propagating preferentially to retrosplenial and prefrontal cortices. I hypothesized that hippocampo –cortical
synchrony during SWRs will gradually increase with learning and that this process could lead to the generation of abstract
representations, or schemas, in the cortex that will facilitate future decisions. Finally, I will test whether SWR-associated
cortical sequences are locally generated or inherited from the hippocampus and how different classes of interneurons
contribute to them. To achieve this, I will record and optogenetically manipulate different cell sub-types in transgenic mice.
By using an innovative experimental approach, the proposed project will provide novel insights into the circuit
mechanisms and behavioral role of neuronal sequences involved in learning and memory. This knowledge will also shed
light into the mechanisms underlying memory deficits in neural disorders such as Alzheimer disease, schizophrenia and
intellectual disability. It may also open new avenues for more targeted, closed-loop interventions in these disorders.
The scientific skills developed during the training period of this project will be crucial for the accomplishment of the
immediate scientific goals and become the pillars for the research I will develop in my future independent laboratory.
项目概要
该项目的目标是了解神经序列协调背后的电路机制
海马体和新皮质及其在学习和记忆中的作用是最近的经历。
以有序序列的形式重新激活,以时间压缩的方式重述行为。
重新激活是由同步网络事件(称为尖波纹波(SWR))协调的,这些同步网络事件起源于
已提出 SWR 和相关神经元介导的序列。
记忆巩固、计划和学习,但仍然缺乏这些功能的直接证明。
以学习和记忆缺陷为特征的疾病与 SWR 紊乱有关。
决策时,新皮质被认为可以概括海马体中编码的个人经验来推断
环境规律和规则会影响新皮质活动,但下游皮质区域如何读出这些活动?
在 SWR 期间传输的海马代码并使用此信息来指导目标导向的行为尚不清楚。
我将在海马体及其主要皮质中进行硅探针记录和光遗传学操作
行为大鼠和小鼠的目标区域,以测试 SWR 序列在
首先,我将使用一种新颖的光遗传学方法来闭环操纵。
SWR 直接测试 SWR 关联序列是否支持内存引导行为。
支持这样的假设:SWR 随着内存需求的增加而变得更长,从而允许延长重放事件,
这些延长的序列对于记忆引导导航和空间学习来说是必要且充分的。
我将在目标导向的空间行为的背景下研究 SWR 对下游皮质目标的影响。
测试海马-皮质相互作用是否存在特定的功能拓扑,包括背侧和腹侧海马
SWR 优先传播到压后皮质和前额叶皮质。
SWR 期间的同步性将随着学习而逐渐增加,并且这个过程可能导致抽象的生成
最后,我将测试大脑皮层中的表征或模式是否与 SWR 相关。
皮质序列是本地生成的或从海马体继承的,以及不同类别的中间神经元如何
为了实现这一目标,我将记录并光遗传学操纵转基因小鼠的不同细胞亚型。
通过使用创新的实验方法,拟议的项目将为电路提供新颖的见解
这些知识也将涉及学习和记忆中神经序列的机制和行为作用。
深入了解阿尔茨海默病、精神分裂症等神经疾病中记忆缺陷的机制
它还可能为对这些疾病进行更有针对性的闭环干预开辟新途径。
在该项目培训期间培养的科学技能对于实现这一目标至关重要
近期的科学目标,并成为我将在未来的独立实验室中开展的研究的支柱。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CA2 orchestrates hippocampal network dynamics.
CA2 协调海马网络动态。
- DOI:10.1002/hipo.23495
- 发表时间:2023
- 期刊:
- 影响因子:3.5
- 作者:Oliva,Azahara;Fernandez-Ruiz,Antonio;Karaba,LindsayA
- 通讯作者:Karaba,LindsayA
Over and above frequency: Gamma oscillations as units of neural circuit operations.
- DOI:10.1016/j.neuron.2023.02.026
- 发表时间:2023-04-05
- 期刊:
- 影响因子:16.2
- 作者:Fernandez-Ruiz A;Sirota A;Lopes-Dos-Santos V;Dupret D
- 通讯作者:Dupret D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Antonio Fernandez-Ruiz其他文献
Antonio Fernandez-Ruiz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Antonio Fernandez-Ruiz', 18)}}的其他基金
How do animals learn the structure of their natural environment?
动物如何了解自然环境的结构?
- 批准号:
10685715 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Hippocampo-cortical circuit mechanisms of neuronal sequences during learning
学习过程中神经元序列的海马皮质回路机制
- 批准号:
10432328 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Hippocampo-cortical circuit mechanisms of neuronal sequences during learning
学习过程中神经元序列的海马皮质回路机制
- 批准号:
10461208 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Hippocampo-cortical circuit mechanisms of neuronal sequences during learning
学习过程中神经元序列的海马皮质回路机制
- 批准号:
9805996 - 财政年份:2019
- 资助金额:
$ 24.9万 - 项目类别:
相似国自然基金
面向脑疾病高效可信诊断的多模态时空数据挖掘
- 批准号:62376065
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
四君子汤通过调节胃粘膜逆生细胞命运影响胃癌前疾病与胃癌发生的作用与机制研究
- 批准号:82373110
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向肺部疾病识别的噪声标签学习方法研究
- 批准号:62302032
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于老年慢性乙肝患者共病模式构建疾病负担动态变化预测模型
- 批准号:82304246
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向胃肠道疾病准确筛查的内窥镜视频质量评价方法研究
- 批准号:62371305
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
The Alzheimer's Disease Tau Platform Clinical Trial
阿尔茨海默病 Tau 平台临床试验
- 批准号:
10655872 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Using Photobiomodulation to Alleviate Brain Hypoperfusion in Alzheimer's Disease
利用光生物调节缓解阿尔茨海默氏病的大脑灌注不足
- 批准号:
10656787 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
GPR39 as a Therapeutic Target in Aging-Related Vascular Cognitive Impairment and Dementia
GPR39 作为衰老相关血管认知障碍和痴呆的治疗靶点
- 批准号:
10734713 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Evaluating a novel, orally-active TREM2-targeting drug in AD
评估一种新型口服活性 TREM2 靶向药物治疗 AD 的效果
- 批准号:
10735206 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别: