The Digital Phenotype of Bipolar Disorder: Harnessing Technology to Identify Bipolar Mood Symptoms
双相情感障碍的数字表型:利用技术识别双相情感障碍的症状
基本信息
- 批准号:10669716
- 负责人:
- 金额:$ 19.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-04 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerometerAdolescenceAdolescentAdultAffectAgitationAndroidAwardBeesBehaviorBiological MarkersBipolar DisorderCaregiversCellular PhoneDataDevelopmentDiagnosticDigital biomarkerDiurnal RhythmDoctor of PhilosophyEarly InterventionEarly identificationEffectivenessEvaluationExposure toFutureGoalsHumanIn SituIndividualInterventionInterviewLearningLifeLife ExpectancyLinkLongitudinal StudiesMeasuresMental HealthMental Health ServicesMentored Patient-Oriented Research Career Development AwardMentorsMentorshipMeta-AnalysisMethodsMoodsMorbidity - disease rateNational Institute of Mental HealthNatureOccupationsOutcomeParticipantPatientsPeriodicityPersonsPhenotypePopulationPsyche structurePsychiatryPsychotic DisordersPublic HealthQuality of lifeRecurrenceRelapseReportingResearchResearch DesignResearch PersonnelResourcesRiskSignal TransductionSleepSleep DisordersSpecific qualifier valueSpeechSymptomsTechniquesTechnologyTelephoneTestingText MessagingTimeTrainingTranslational ResearchValidity and ReliabilityYouthagedcareerclinically significantcommon symptomcomputer sciencecostdigitalemerging adultfollow-uphigh riskhigher educationimprovedindexinginnovationlongitudinal analysismetermobile computingmood symptommortalitynew technologynovel strategiespatient orientedpatient oriented researchpredictive modelingpressurepreventprognosticationprogramsprospectivescreeningsensorservice utilizationskillssmartphone applicationsocialstatistical and machine learningstatistical learning
项目摘要
Project Summary
Bipolar disorder (BD) is associated with significant mortality and morbidity. It typically begins in adolescence or
early adulthood, an important developmental period during which higher education, first jobs, and relationships
are pursued. Recurrent mood episodes during this period can have a devastating impact on a young person's
ability to achieve a high quality of life as an adult. A method by which to predict the onset of mood symptoms in
adolescence would create an opportunity to intervene and reduce exposure to the harmful effects of recurrent
episodes. A new approach – digital phenotyping – may make this possible. Digital phenotyping is defined as
the “moment-by-moment quantification of the human phenotype in situ” using data collected from smartphone
sensors (accelerometer, texts, calls, GPS). Digital phenotyping has been used to identify mood changes and
potential signs of relapse in adults with BD, but has not yet been applied to adolescents. We will use Beiwe, a
digital phenotyping application for iOS and Android phones, to collect digital phenotypes from participants
(aged 14-19) over 18-months (N=120; n=70 with BD [I, II, Other Specified], n=50 typically-developing). Over
the follow-up period, participants will complete biweekly mood assessments, and both participants and
caregivers will be interviewed monthly to track changes in mood/behavior. This will allow the phone sensor
data collected with Beiwe to be closely linked to symptom changes. The specific aims of this project are (1) to
characterize the digital phenotype of BD symptoms in adolescents, (2) to describe differences in the digital
phenotypes of the BD and typically developing groups, and (3) to develop a model for predicting mood
symptoms prospectively. The proposed study is consistent with all four NIMH strategic objectives for the future
of mental health research. This K23 Award will provide Anna Van Meter, PhD with the necessary training and
mentorship to (1) gain proficiency in computational psychiatry by learning to analyze longitudinal data using
statistical and machine learning techniques, (2) build expertise in patient-oriented translational research by
designing and conducting a longitudinal study with youth participants; (3) learn to employ state-of-the-art
mobile technology to personalize assessment and intervention using patient data. To accomplish these training
goals, Dr. Van Meter has organized an outstanding mentorship team (Anil Malhotra, MD, Jukka-Pekka Onnela,
DSc, John Kane, MD, Christoph Correll, MD, and Deborah Estrin, PhD), with expertise in patient-oriented
research, technology-based mental health research, computational psychiatry, bipolar disorder in youth, and
computer science. The proposed study will be the first to describe the digital phenotype of BD in adolescents, a
population at great risk for the onset of BD as well as the damaging effects of repeated episodes. The
completion of the proposed K23 Mentored Career Award will support an innovative program of patient-oriented
research, and will provide Dr. Van Meter with the skills necessary to become an independent investigator
pursuing novel technological solutions to improve patients' quality of life.
项目摘要
双相情感障碍(BD)与显着的死亡率和发病率有关。它通常从青少年或
成年早期,这是一个重要的发展时期
被追捕。在此期间,经常性情绪发作可能会对年轻人的
一种预测情绪症状发作的方法
青少年将为干预和减少经常出现的有害影响而创造机会
情节。一种新的方法 - 数字表型 - 可能使这成为可能。数字表型定义为
使用智能手机收集的数据的“原位对人类表型的瞬间量化”
传感器(加速度计,文本,呼叫,GPS)。数字表型用于识别情绪变化和
BD成年人中继电器的潜在迹象,但尚未应用于青少年。我们将使用beiwe,一个
用于iOS和Android手机的数字表型应用,从参与者那里收集数字表型
(14-19岁)超过18个月(n = 120; n = 70,用bd [i,ii,其他指定的],n = 50通常开发)。
随访期,参与者将完成双周的情绪评估,并
护理人员将每月接受采访,以跟踪情绪/行为的变化。这将允许电话传感器
用Beiwe收集的数据与症状变化密切相关。该项目的具体目的是(1)
表征青少年BD症状的数字表型,(2)描述数字的差异
BD的表型和通常是发展组的表型,以及(3)开发一个模型来预测情绪
前瞻性症状。拟议的研究与未来的所有四个NIMH战略目标一致
心理健康研究。该K23奖将为Anna Van Meter,博士提供必要的培训和
通过学习分析纵向数据的培训
统计和机器学习技术,(2)在以患者为导向的翻译研究中建立专业知识
与青年参与者设计和进行纵向研究; (3)学会采用最先进的
移动技术使用患者数据个性化评估和干预。完成这些培训
进球,范·米特(Van Meter)博士组织了一个杰出的心态团队(医学博士Anil Malhotra,Jukka-Pekka Onnela,
DSC,医学博士John Kane,医学博士Christoph Correll和Deborah Estrin,PhD),具有以患者为导向的专业知识
研究,基于技术的心理健康研究,计算精神病学,青年躁郁症以及
计算机科学。拟议的研究将是第一个描述青少年中BD的数字表型的研究,
BD发作以及重复发作的破坏性影响的人口很大。
拟议的K23指导职业奖的完成将支持以患者为导向的创新计划
研究,并将为Van Meter博士提供成为独立调查员所需的技能
追求新颖的技术解决方案以改善患者的生活质量。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Clinician Perspectives on Using Computational Mental Health Insights From Patients' Social Media Activities: Design and Qualitative Evaluation of a Prototype.
- DOI:10.2196/25455
- 发表时间:2021-11-16
- 期刊:
- 影响因子:5.2
- 作者:Yoo DW;Ernala SK;Saket B;Weir D;Arenare E;Ali AF;Van Meter AR;Birnbaum ML;Abowd GD;De Choudhury M
- 通讯作者:De Choudhury M
The Impact of the COVID-19 Pandemic on Adolescents: An Opportunity to Build Resilient Systems.
COVID-19 大流行对青少年的影响:构建弹性系统的机会。
- DOI:10.1177/08901171221140641d
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Nadeem,Erum;RVanMeter,Anna
- 通讯作者:RVanMeter,Anna
Pramipexole to Improve Cognition in Bipolar Disorder: A Randomized Controlled Trial.
- DOI:10.1097/jcp.0000000000001407
- 发表时间:2021-07-01
- 期刊:
- 影响因子:2.9
- 作者:Van Meter AR;Perez-Rodriguez MM;Braga RJ;Shanahan M;Hanna L;Malhotra AK;Burdick KE
- 通讯作者:Burdick KE
The stability and persistence of symptoms in childhood-onset ADHD.
儿童期多动症症状的稳定性和持续性。
- DOI:10.1007/s00787-023-02235-3
- 发表时间:2024
- 期刊:
- 影响因子:6.4
- 作者:VanMeter,AnnaR;Sibley,MargaretH;Vandana,Pankhuree;Birmaher,Boris;Fristad,MaryA;Horwitz,Sarah;Youngstrom,EricA;Findling,RobertL;Arnold,LEugene
- 通讯作者:Arnold,LEugene
Associations of Social Capital with Mental Disorder Prevalence, Severity, and Comorbidity among U.S. Adolescents.
- DOI:10.1080/15374416.2021.1875326
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Hirota T;Paksarian D;He JP;Inoue S;Stapp EK;Van Meter A;Merikangas KR
- 通讯作者:Merikangas KR
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anna Robinson Van Meter其他文献
Anna Robinson Van Meter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anna Robinson Van Meter', 18)}}的其他基金
The Digital Phenotype of Bipolar Disorder: Harnessing Technology to Identify Bipolar Mood Symptoms
双相情感障碍的数字表型:利用技术识别双相情感障碍的症状
- 批准号:
10582951 - 财政年份:2022
- 资助金额:
$ 19.55万 - 项目类别:
The Digital Phenotype of Bipolar Disorder: Harnessing Technology to Identify Bipolar Mood Symptoms
双相情感障碍的数字表型:利用技术识别双相情感障碍的症状
- 批准号:
10471803 - 财政年份:2022
- 资助金额:
$ 19.55万 - 项目类别:
The Digital Phenotype of Bipolar Disorder: Harnessing Technology to Identify Bipolar Mood Symptoms
双相情感障碍的数字表型:利用技术识别双相情感障碍的症状
- 批准号:
9806296 - 财政年份:2019
- 资助金额:
$ 19.55万 - 项目类别:
The Digital Phenotype of Bipolar Disorder: Harnessing Technology to Identify Bipolar Mood Symptoms
双相情感障碍的数字表型:利用技术识别双相情感障碍的症状
- 批准号:
10214506 - 财政年份:2019
- 资助金额:
$ 19.55万 - 项目类别:
相似国自然基金
青春期发育对青少年心理行为发展的影响及生理机制
- 批准号:32300888
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基因与同伴环境对青少年冒险行为的调控及其神经机制
- 批准号:31800938
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
家庭关系对青少年网络游戏成瘾的影响:行为与认知神经机制
- 批准号:31800937
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
青春期甲基苯丙胺暴露对小鼠脑发育的影响以及作用机制研究
- 批准号:81772034
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
青春期可卡因滥用对成年时前额皮质内侧部锥体神经元功能的影响:GABA能突触传递的调控机制研究
- 批准号:81571303
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
相似海外基金
Understanding and Targeting the Pathophysiology of Youth-onset Type 2 Diabetes
了解并针对青年发病 2 型糖尿病的病理生理学
- 批准号:
10583335 - 财政年份:2023
- 资助金额:
$ 19.55万 - 项目类别:
Characterizing the role of adolescent physical activity in early onset breast cancer risk for women across the familial risk continuum
描述青少年体力活动在整个家庭风险连续体中女性早发乳腺癌风险中的作用
- 批准号:
10447949 - 财政年份:2022
- 资助金额:
$ 19.55万 - 项目类别:
Examining How Psychosocial Stress Gets "Under the Skin" and Leads to Cardiovascular Disease Risk in Diverse Children: A Mixed-Methods Study
检查心理社会压力如何“深入皮肤”并导致不同儿童的心血管疾病风险:一项混合方法研究
- 批准号:
10363050 - 财政年份:2022
- 资助金额:
$ 19.55万 - 项目类别:
Sleep and Cardiometabolic Health in United States Hispanic/Latino Late Adolescents/Young Adults
美国西班牙裔/拉丁裔晚期青少年/年轻人的睡眠和心脏代谢健康
- 批准号:
10432438 - 财政年份:2022
- 资助金额:
$ 19.55万 - 项目类别: