Improving the Accuracy of Implicit Solvents with a Physics-Guided Neural Network
利用物理引导神经网络提高隐式溶剂的准确性
基本信息
- 批准号:10669809
- 负责人:
- 金额:$ 18.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAdherenceAffinityBenchmarkingBindingBinding ProteinsBiologicalBiological ProcessBiological SciencesCellsCharacteristicsChemicalsCommunicable DiseasesCommunitiesComplexComputer AssistedComputer ModelsComputer SimulationComputing MethodologiesCouplingDNA biosynthesisDataData SetDatabasesDrug DesignEnsureFree EnergyGTP-Binding ProteinsGene ExpressionGoalsHealthHuman bodyHybridsInterdisciplinary StudyLigandsMachine LearningMeasuresMedicineMethodsModelingModernizationModificationNeural Network SimulationOutcomes ResearchPerformancePhysicsPlayPreparationPropertyProtein ConformationProteinsProtocols documentationResearchRunningSamplingSideSignal TransductionSignal Transduction PathwaySolventsSourceSource CodeStructureStudy modelsSystemTechniquesTestingTrainingWaterWeightcostdata cleaningdata modelingdata-driven modeldesigndrug candidatedrug discoverydrug-like compoundexperimental studyflexibilityfootgraph neural networkimprovedlaboratory experimentloss of functionmolecular recognitionneglectneural networknovelnovel therapeuticsphysical modelpreventprogramsprotein foldingprotonationprototyperesponsesimulationsmall moleculestemstructural biologyusabilityvirtual screeningweb services
项目摘要
Project Summary/Abstract
Drug discovery is one of the most challenging tasks in biological sciences; it takes about 10-15 years and
$2 billion on average to discover a new drug. The main goal in drug discovery is identifying drug-like com-
pounds (ligands) capable of modulating specific biological targets (proteins). One key feature of protein-ligand
interactions is the binding free energy change, G, that occurs between the protein and the ligand upon the
ligand's attachment. This physiochemical feature heavily dictates how strongly a protein and ligand interact and
is particularly useful to understand for drug design. While wet-lab experiments accurately estimate G, they
are significantly slow, costly, and laborious. On the other hand, computational simulations enable significantly
faster estimation of G and shed light on the binding mechanism of various structures that could have been
complicated to be examined otherwise. The implicit solvent framework, which treats solvent as a continuum
with the dielectric and non-polar properties of water, offer much more efficient estimation of G compared
to other computational methodologies, such as alchemical free energy methods. Despite noticeable progress
in implicit solvent modeling, serious concerns about its accuracy remain that stem from the underlying physi-
cal approximations. This research will employ modern machine learning techniques to bridge the accuracy gap
between a physics-based implicit solvent model and experimental references in terms of G calculations. In
particular, experimental data will be integrated into a generalized Born (GB) implicit solvent model so that with
adherence to the physical model, new structural features could improve the accuracy. In addition to the model
accuracy, it is essential to retain interpretability (that accounts for the model simplicity) and transferability (that
assures consistent performance on different datasets). To this end, a novel multi-objective loss function will be
introduced that takes “accuracy”, “interpretability”, and “transferability” into consideration. Standard protein-ligand
databases, benchmarks, and datasets will be used for designing the proposed hybrid model, including host-guest
systems, SAMPL challenge benchmarks, PDBbind, and BindingDB. While some of these sources contain clean
data, many require further post-processing to prepare for running the GB model. Careful data preparation will
be performed by following standard protocols and via popular web services. The modular characteristics of the
proposed physics-data model will allow for testing various flavors of implicit solvent (physics-based model) and
modifications to the proposed Graph Convolutional Network (data-driven model). This flexibility of the hybrid
model facilitates new interdisciplinary research between the classical physics-based and the modern data-driven
ends. The final source code and parameterized datasets will be available freely to the public. They could be
incorporated into the high-throughput virtual screening of candidate drugs in the early stages of drug discovery.
The outcome of this research will benefit the biomolecular modeling community by providing an approach to build
novel, accurate, and efficient computational models for studying protein-ligand interactions.
项目摘要/摘要
药物发现是生物科学中最挑战的任务之一。大约需要10 - 15年的时间
平均20亿美元发现一种新药。药物发现的主要目的是确定类似药物的com-
磅(配体)能够调节特定的生物靶标(蛋白质)。蛋白质配体的一个关键特征
相互作用是蛋白质和配体之间发生的结合自由能变化G
配体的依恋。这种生理化学特征在很大程度上决定了蛋白质和配体相互作用的强度和
对于吸毒设计特别有用。当湿性实验准确估计G时,它们是
非常慢,昂贵和费力。另一方面,计算模拟可以显着
更快地估计G和Shed阐明可能是各种结构的结合机制
复杂的检查,另外进行检查。隐式溶剂框架,将溶剂视为连续性
与水的饮食和非极性特性相比,G相比提供了更多有效的G估计
用于其他计算方法,例如酒精自由能法。尽管取得了明显的进步
在隐式溶剂建模中,对其准确性的严重关注仍然是基本的物理学
CAL近似。这项研究将采用现代机器学习技术来弥合准确性差距
基于物理学的隐式溶剂模型与G计算方面的实验参考之间。在
特别的,实验数据将集成到广义诞生(GB)隐式溶剂模型中,以便与
遵守物理模型,新的结构特征可以提高准确性。除了模型
准确性,必须保留可解释性(解释模型简单性)和可转让性(
确保在不同数据集上保持一致的性能)。为此,新型的多目标损失函数将是
引入了考虑“准确性”,“可解释性”和“可转让性”的介绍。标准蛋白质配体
数据库,基准和数据集将用于设计提出的混合模型,包括主机 - 网络
系统,采样挑战基准,PDBBIND和BINDINGDB。这些来源中有一些包含清洁
数据,许多需要进一步的后处理才能准备运行GB模型。仔细的数据准备将
可以通过以下标准协议和流行的Web服务执行。模块化特征
拟议的Physis-Data模型将允许测试隐式解决方案的各种大道(基于物理的模型)和
对所提出的图形卷积网络(数据驱动模型)的修改。混合动力的这种功能
模型促进了基于经典物理与现代数据驱动的新的跨学科研究
结束。最终的源代码和参数化数据集将免费向公众提供。他们可能是
在药物发现的早期阶段,纳入了候选药物的高通量虚拟筛查。
这项研究的结果将通过提供一种建造方法来利用生物分子建模社区
用于研究蛋白质 - 配体相互作用的新型,准确和有效的计算模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Negin Forouzesh其他文献
Negin Forouzesh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
坚持还是转型?反馈驱动的创业者机会信念认知更新及响应决策机理
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
坚持还是转型?反馈驱动的创业者机会信念认知更新及响应决策机理
- 批准号:72272131
- 批准年份:2022
- 资助金额:45.00 万元
- 项目类别:面上项目
不确定性下创业团队能量和抗逆力对创业坚持的权变影响研究
- 批准号:72162025
- 批准年份:2021
- 资助金额:29 万元
- 项目类别:地区科学基金项目
创造性思维中灵活性和坚持性动态交互的神经基础
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
创造性思维中灵活性和坚持性动态交互的神经基础
- 批准号:32100850
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
相似海外基金
A Clinical Laboratory with Integrated Neuroscience (CLIN) for Early Evaluation of Medications for Substance Use Disorders
综合神经科学 (CLIN) 临床实验室,用于药物滥用障碍药物的早期评估
- 批准号:
10576815 - 财政年份:2020
- 资助金额:
$ 18.25万 - 项目类别:
Next Generation Multipurpose Intravaginal Ring Technology Using Innovative CLIP 3D Printing
采用创新 CLIP 3D 打印的下一代多用途阴道环技术
- 批准号:
10540359 - 财政年份:2019
- 资助金额:
$ 18.25万 - 项目类别:
ERC Einstein-Rockefeller-CUNY Center for AIDS research
ERC 爱因斯坦-洛克菲勒-纽约市立大学艾滋病研究中心
- 批准号:
10901420 - 财政年份:2017
- 资助金额:
$ 18.25万 - 项目类别:
ERC Einstein-Rockefeller-CUNY Center for AIDS research
ERC 爱因斯坦-洛克菲勒-纽约市立大学艾滋病研究中心
- 批准号:
10605256 - 财政年份:2017
- 资助金额:
$ 18.25万 - 项目类别: