Improving the Accuracy of Implicit Solvents with a Physics-Guided Neural Network
利用物理引导神经网络提高隐式溶剂的准确性
基本信息
- 批准号:10669809
- 负责人:
- 金额:$ 18.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAdherenceAffinityBenchmarkingBindingBinding ProteinsBiologicalBiological ProcessBiological SciencesCellsCharacteristicsChemicalsCommunicable DiseasesCommunitiesComplexComputer AssistedComputer ModelsComputer SimulationComputing MethodologiesCouplingDNA biosynthesisDataData SetDatabasesDrug DesignEnsureFree EnergyGTP-Binding ProteinsGene ExpressionGoalsHealthHuman bodyHybridsInterdisciplinary StudyLigandsMachine LearningMeasuresMedicineMethodsModelingModernizationModificationNeural Network SimulationOutcomes ResearchPerformancePhysicsPlayPreparationPropertyProtein ConformationProteinsProtocols documentationResearchRunningSamplingSideSignal TransductionSignal Transduction PathwaySolventsSourceSource CodeStructureStudy modelsSystemTechniquesTestingTrainingWaterWeightcostdata cleaningdata modelingdata-driven modeldesigndrug candidatedrug discoverydrug-like compoundexperimental studyflexibilityfootgraph neural networkimprovedlaboratory experimentloss of functionmolecular recognitionneglectneural networknovelnovel therapeuticsphysical modelpreventprogramsprotein foldingprotonationprototyperesponsesimulationsmall moleculestemstructural biologyusabilityvirtual screeningweb services
项目摘要
Project Summary/Abstract
Drug discovery is one of the most challenging tasks in biological sciences; it takes about 10-15 years and
$2 billion on average to discover a new drug. The main goal in drug discovery is identifying drug-like com-
pounds (ligands) capable of modulating specific biological targets (proteins). One key feature of protein-ligand
interactions is the binding free energy change, G, that occurs between the protein and the ligand upon the
ligand's attachment. This physiochemical feature heavily dictates how strongly a protein and ligand interact and
is particularly useful to understand for drug design. While wet-lab experiments accurately estimate G, they
are significantly slow, costly, and laborious. On the other hand, computational simulations enable significantly
faster estimation of G and shed light on the binding mechanism of various structures that could have been
complicated to be examined otherwise. The implicit solvent framework, which treats solvent as a continuum
with the dielectric and non-polar properties of water, offer much more efficient estimation of G compared
to other computational methodologies, such as alchemical free energy methods. Despite noticeable progress
in implicit solvent modeling, serious concerns about its accuracy remain that stem from the underlying physi-
cal approximations. This research will employ modern machine learning techniques to bridge the accuracy gap
between a physics-based implicit solvent model and experimental references in terms of G calculations. In
particular, experimental data will be integrated into a generalized Born (GB) implicit solvent model so that with
adherence to the physical model, new structural features could improve the accuracy. In addition to the model
accuracy, it is essential to retain interpretability (that accounts for the model simplicity) and transferability (that
assures consistent performance on different datasets). To this end, a novel multi-objective loss function will be
introduced that takes “accuracy”, “interpretability”, and “transferability” into consideration. Standard protein-ligand
databases, benchmarks, and datasets will be used for designing the proposed hybrid model, including host-guest
systems, SAMPL challenge benchmarks, PDBbind, and BindingDB. While some of these sources contain clean
data, many require further post-processing to prepare for running the GB model. Careful data preparation will
be performed by following standard protocols and via popular web services. The modular characteristics of the
proposed physics-data model will allow for testing various flavors of implicit solvent (physics-based model) and
modifications to the proposed Graph Convolutional Network (data-driven model). This flexibility of the hybrid
model facilitates new interdisciplinary research between the classical physics-based and the modern data-driven
ends. The final source code and parameterized datasets will be available freely to the public. They could be
incorporated into the high-throughput virtual screening of candidate drugs in the early stages of drug discovery.
The outcome of this research will benefit the biomolecular modeling community by providing an approach to build
novel, accurate, and efficient computational models for studying protein-ligand interactions.
项目摘要/摘要
药物发现是生物科学中最具挑战性的任务之一。
20亿美元以发现一种新药。
磅(配体)能够调节特定生物靶标(蛋白质)。
相互作用是粘合能变化g,它发生在蛋白质和配体之间
配体的依恋。
对于药物设计特别了解。
另一方面,计算模拟显着慢,昂贵且费力。
更快地估计G和Shed阐明可能是各种结构的结合机制
更复杂的是隐式溶剂框架,将溶剂视为连续
使用水的介电性和非极性特性,与G的相比,G相比提供了更多的有效估计
用于其他计算方法,例如炼金术自由能法。
为了暗示溶剂建模,对其准确性的严重关注仍然是基本的物理学
Cal近似值。
基于物理学的隐式溶剂模型和G计算的实验参考
特别的,实验数据将集成到广义诞生(GB)隐式溶剂模型中,以便与
遵守物理模型,除了模型外,新的结构特征还可以提高精度。
准确性,必须保留解释性(解释模型简单性)和可转让性(That)至关重要
在此目的
引入的,将“准确性”,“可解释性”和“可转移性”介绍为标准蛋白质
数据库,基准和数据集将用于设计支撑混合模型,涉及主机 - 吉斯特
系统,采样基准,PDBBIND和BINDINGDB。
数据,许多需要进一步的后处理才能准备运行GB模型。
通过以下标准协议和流行的Web服务执行。
支撑物理数据模型将允许测试隐式溶剂的各种型号
对支撑图卷积网络(数据驱动模型)的修改。
模型促进了基于经典物理与现代数据驱动的新的跨学科研究
结束。最终的源代码和参数化数据集将向公众提供
在药物drig发现的早期阶段中,纳入了高通用筛选药物。
这项研究的结果是通过提供一种建造方法来填补生物分子建模社区
用于研究蛋白质 - 配体相互作用的新型,准确和有效的计算机模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Negin Forouzesh其他文献
Negin Forouzesh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于保护动机理论的新确诊青少年HIV感染者抗病毒治疗依从性“游戏+”健康教育及作用机制研究
- 批准号:82304256
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于前景理论的ADHD用药决策过程与用药依从性内在机制研究
- 批准号:72304279
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于强化学习AI聊天机器人对MSM开展PrEP服药依从性精准干预模式探索及干预效果研究
- 批准号:82373638
- 批准年份:2023
- 资助金额:59 万元
- 项目类别:面上项目
基于HAPA理论的PCI术后患者运动依从性驱动机制与干预方案构建研究
- 批准号:72304180
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CAS理论视角下农村老年心血管代谢性共病管理依从性的社区-患者协同机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A Clinical Laboratory with Integrated Neuroscience (CLIN) for Early Evaluation of Medications for Substance Use Disorders
综合神经科学 (CLIN) 临床实验室,用于药物滥用障碍药物的早期评估
- 批准号:
10576815 - 财政年份:2020
- 资助金额:
$ 18.25万 - 项目类别:
Next Generation Multipurpose Intravaginal Ring Technology Using Innovative CLIP 3D Printing
采用创新 CLIP 3D 打印的下一代多用途阴道环技术
- 批准号:
10540359 - 财政年份:2019
- 资助金额:
$ 18.25万 - 项目类别:
ERC Einstein-Rockefeller-CUNY Center for AIDS research
ERC 爱因斯坦-洛克菲勒-纽约市立大学艾滋病研究中心
- 批准号:
10901420 - 财政年份:2017
- 资助金额:
$ 18.25万 - 项目类别:
ERC Einstein-Rockefeller-CUNY Center for AIDS research
ERC 爱因斯坦-洛克菲勒-纽约市立大学艾滋病研究中心
- 批准号:
10605256 - 财政年份:2017
- 资助金额:
$ 18.25万 - 项目类别: