Artificial Intelligence to Predict Outcomes in Patients with Acute Kidney Injury on Continuous Renal Replacement Therapy
人工智能预测急性肾损伤患者连续肾脏替代治疗的结果
基本信息
- 批准号:10658576
- 负责人:
- 金额:$ 70.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:Acute Renal Failure with Renal Papillary NecrosisAffectAlgorithmsArtificial IntelligenceAwarenessBiometryBlood VesselsCaringCathetersClassificationClinicClinicalClinical DataClinical ResearchClinical TrialsCritical IllnessDataData SetDecision MakingDevelopmentDialysis procedureDoseElectronic Health RecordExcisionExclusionFluid TherapyFutureGoalsHourInstitutionIntensive Care UnitsInterventionKidneyLiquid substanceLogistic RegressionsMeasurementMeasuresModalityModelingModificationMonitorOutcomePatient AdmissionPatientsPhenotypePopulationPrognosisPublishingRecoveryRegistriesRenal Replacement TherapyReproducibilityResearchResolutionRiskRisk FactorsSeriesSurvivorsTestingTherapeutic InterventionTimeValidationVulnerable Populationsacute careclinical decision supportclinical developmentclinically relevantcomputing resourcesdata resourcedeep learningdeep learning modeldensityexperiencehemodynamicsimprovedimproved outcomeinnovationmodel developmentmodifiable riskmortalitymultimodal datamultimodalitynoveloutcome predictionpersonalized interventionprecision medicinepredict clinical outcomepredictive modelingrisk predictionrisk prediction modelsolutesurvival predictiontool
项目摘要
ABSTRACT
Acute kidney injury (AKI) affects up to half of critically ill patients admitted to intensive care units (ICU). In
patients with AKI and hemodynamic instability, continuous renal replacement therapy (CRRT) is the
preferred dialysis modality. ICU mortality in this vulnerable population is high but kidney recovery occurs in
up to two-thirds of survivors. Universally accepted and accurate approaches for predicting survival or kidney
recovery in these patients do not exist currently. This is clinically relevant as prediction of key outcomes
could guide decision-making of CRRT delivery, goals of acute care, and personalized post-ICU care
according to kidney recovery prognosis. Since there are no proven interventions to improve outcomes in
these patients, identification of modifiable risk factors and sub-phenotypes is necessary to develop precision
medicine approaches in CRRT. Due to advances in artificial intelligence (AI) and availability of multi-modal
data, deep learning (DL) –a subset of AI– is a valuable approach that allows construction of accurate and
reliable risk prediction models. Further, the use of novel algorithms such as the Feasible Solution Algorithm
(FSA) could help identify patient sub-phenotypes and model applications. We propose to develop and
validate innovative and reproducible DL approaches to predict RRT-free survival at actionable timepoints
and use FSA to identify patient sub-phenotypes with differing RRT-free survival risk according to multi-
modal data. Our published preliminary data demonstrated superiority of DL models compared to optimized
logistic regression for RRT-free survival prediction. Prediction of 24-hour mortality was improved by
incorporating time-series data during CRRT. We hypothesize that time-series multi-modal data
(including EHR and CRRT machine data) will generate accurate and generalizable risk prediction to
guide clinical interventions and identify sub-phenotypes for model interpretation and clinical utility
testing. We will utilize datasets from 9 institutions that encompass multi-modal EHR clinical data and
programmatic and therapy data from CRRT machines for model and sub-phenotyping development, testing,
and independent validation. This innovative research will 1) assist development of clinical decision support
platforms to guide informed CRRT delivery and improve clinical outcomes and 2) identify sub-phenotypes of
patients that could benefit from more personalized and testable novel CRRT interventions.
抽象的
急性肾脏损伤(AKI)会影响多达一半的重症监护病房(ICU)的重症患者。
AKI和血流动力学不稳定的患者,连续肾脏替代疗法(CRRT)是
首选的透析方式。该脆弱人群中的ICU死亡率很高,但肾脏恢复发生在
最多三分之二的生存。普遍接受且准确的方法来预测生存或肾脏
这些患者目前不存在这些患者的康复。这在临床上与关键结果的预测相关
可以指导CRRT交付,急诊目标和个性化ICU护理的决策
根据肾脏恢复提示。由于没有可靠的干预措施来改善结果
这些患者,确定可修改的危险因素和亚表格型对于发展精度是必要的
CRRT中的医学方法。由于人工智能(AI)的进步和多模式的可用性
数据,深度学习(DL) - AI的子集 - 一种有价值的方法,可以构建准确的和
可靠的风险预测模型。此外,使用新型算法(例如可行溶液算法)
(FSA)可以帮助识别患者的子表格型和模型应用。我们建议开发和
验证创新和可重现的DL方法,以预测可起诉时点的无RRT生存
并使用FSA识别具有不同的无RRT生存风险的患者亚表型
模态数据。我们发表的初步数据表明,与优化相比,DL模型的优势
无RRT生存预测的逻辑回归。预测24小时死亡率已通过
在CRRT期间合并时间序列数据。我们假设时间序列多模式数据
(包括EHR和CRRT机器数据)将产生准确且可推广的风险预测
指导临床干预措施并确定用于模型解释和临床实用程序的亚表格型
测试。我们将利用来自多个多模式EHR临床数据的9个机构的数据集和
来自CRRT机器的程序化和治疗数据,用于模型和子表型开发,测试,
和独立验证。这项创新的研究将1)协助开发临床决策支持
指导知情的CRRT交付并改善临床结果的平台,2)确定
可能受益于更个性化和可检验的新型CRRT干预措施的患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Girish Nitin Nadkarni其他文献
Girish Nitin Nadkarni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Girish Nitin Nadkarni', 18)}}的其他基金
Elucidating Genetic and Environmental Second Hits in Racial and Ethnic Minorities with APOL1 High-Risk Genotypes
阐明 APOL1 高风险基因型对少数种族和族裔的遗传和环境二次打击
- 批准号:
10554900 - 财政年份:2022
- 资助金额:
$ 70.5万 - 项目类别:
Artificial Intelligence to Predict Outcomes in Patients with Acute Kidney Injury on Continuous Renal Replacement Therapy
人工智能预测急性肾损伤患者连续肾脏替代治疗的结果
- 批准号:
10261059 - 财政年份:2020
- 资助金额:
$ 70.5万 - 项目类别:
Elucidating Genetic and Environmental Second Hits in Racial and Ethnic Minorities with APOL1 High-Risk Genotypes
阐明 APOL1 高风险基因型对少数种族和族裔的遗传和环境二次打击
- 批准号:
10318592 - 财政年份:2020
- 资助金额:
$ 70.5万 - 项目类别:
Elucidating Genetic and Environmental Second Hits in Racial and Ethnic Minorities with APOL1 High-Risk Genotypes
阐明 APOL1 高风险基因型对少数种族和族裔的遗传和环境二次打击
- 批准号:
10549718 - 财政年份:2020
- 资助金额:
$ 70.5万 - 项目类别:
Risk Clustering and Stratification in Genetically High-Risk Individuals Using Electronic Medical Records and Biomarkers
使用电子病历和生物标记对遗传高危个体进行风险聚类和分层
- 批准号:
9180312 - 财政年份:2016
- 资助金额:
$ 70.5万 - 项目类别:
相似国自然基金
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
社交网络上观点动力学的重要影响因素与高效算法
- 批准号:62372112
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Real-time Prediction of Adverse Outcomes After Surgery
实时预测手术后不良后果
- 批准号:
10724048 - 财政年份:2023
- 资助金额:
$ 70.5万 - 项目类别:
Identifying patient subgroups and processes of care that cause outcome differences following ICU vs. ward triage among patients with acute respiratory failure and sepsis
确定急性呼吸衰竭和脓毒症患者在 ICU 与病房分诊后导致结局差异的患者亚组和护理流程
- 批准号:
10734357 - 财政年份:2023
- 资助金额:
$ 70.5万 - 项目类别:
Developing a Precision Medicine Approach to Pediatric Sepsis-Associated Acute Kidney Injury: Identification of Unique Subphenotypes and Strategies for Bedside Implementation
开发针对小儿脓毒症相关急性肾损伤的精准医学方法:识别独特的亚表型和临床实施策略
- 批准号:
10721391 - 财政年份:2023
- 资助金额:
$ 70.5万 - 项目类别:
Predicting Postoperative Acute Kidney Injury through Integration of Genetics and Electronic Health Records
通过整合遗传学和电子健康记录来预测术后急性肾损伤
- 批准号:
10689663 - 财政年份:2022
- 资助金额:
$ 70.5万 - 项目类别:
Personalizing Therapies for Acute Kidney Injury in Cirrhosis
肝硬化急性肾损伤的个体化治疗
- 批准号:
10663170 - 财政年份:2022
- 资助金额:
$ 70.5万 - 项目类别: