Neural Mechanisms for Flexible Vocal Communication
灵活语音交流的神经机制
基本信息
- 批准号:10658308
- 负责人:
- 金额:$ 211.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-03 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:Adaptive BehaviorsAnimalsAreaBar CodesBehaviorBehavioralBiologicalBody SizeBrainBrain MappingCallithrixCellsCentral AmericaChronicCollaborationsCommunicationCommunication impairmentComplementComputer ModelsDataDrosophila genusElectrophysiology (science)EvolutionGene ExpressionGoalsHealthHumanIndividualInteractive CommunicationLesionMammalsMapsMasticationMeasuresMethodsMolecularMonitorMotorMotor CortexMotor outputMovement DisordersMusNeurodevelopmental DisorderNeuronsNeurosciencesParkinson DiseasePatternPopulationPrimatesProductionResolutionRodentRodent ModelRoleScienceSiliconSliceSocial EnvironmentSocial InteractionSocial WorkStereotypingSystemTestingTimeUltrasonicsViralVisualWorkautism spectrum disordercomparativedensityexperimental studyflexibilityforestinnovationinsightmotor controlmotor learningneuralneural circuitneuromechanismneurophysiologynoveloptogeneticsorofacialresponsesensory inputsocialsocial communicationsoundstroke-induced aphasiavirtualvocal controlvocalizationzebra finch
项目摘要
Project Summary:
Whether to laugh at a joke or to engage in a lively debate, we flexibly modify our vocalizations based
upon social contexts. Such adaptive behavior requires real-time adjustments of motor outputs in
response to rapidly changing sensory inputs. How does the brain accomplish this sensorimotor feat?
Pioneering studies have characterized the brain areas responsible for sound production in many
species (e.g., drosophila, zebra finches, marmosets, mice), but the neural circuits that generate vocal
flexibility remain poorly understood. Vocal flexibility, such as during a conversation, requires voluntary,
context-dependent control over sound production. In mammals, based on human brain lesions, gene
expression profiles, and neurophysiology data in primates, cortical control has been proposed to exert
volitional control over sound production. However, direct evidence for this idea is scarce and the neural
circuit-level mechanisms underlying vocal flexibility, especially in mammals, remain largely unknown.
Finding an appropriate rodent model would complement prior work in the primates and would permit
circuit-level mechanisms to be deciphered. Alston’s singing mice (S. teguina), a highly vocal rodent
from the cloud forests of Central America, are ideally suited to study flexible vocal behaviors. Singing
mice show remarkable vocal flexibility, switching between variable, ultrasonic vocalizations (USVs)
and stereotyped, human-audible songs depending upon social context. In contrast, most rodents
including lab mice (M. musculus) produce only USVs and are not known to participate in vocal
interactions. Singing mice and lab mice are roughly the same body size, and brain slices of S. teguina
at a first glimpse is indistinguishable from those of M. musculus. Neural circuit differences underlying
such drastic behavioral divergence are unknown. Here we propose to test whether the ability of the
singing mice to apply vocalizations flexibly within a social context, and lack thereof in most other rodent
species, is dependent upon motor cortical function, acting via downstream vocal production circuits.
Using chronic electrophysiology (Aim 1), single-cell comparative connectomics (Aim 2), we will
determine the role of motor cortex during natural vocal behaviors and compare cortical connectivity
and function between two species. In Aim 3, we will manipulate the circuit to determine their causal
role in various vocal behaviors in each species. By mapping, measuring and manipulating cortical
circuits, we will learn how motor cortex modulates behavioral flexibility in service of social
communication. More broadly, these experiments will provide a systems-level framework to study
hierarchical motor control circuits – for e.g., how high-level (cortical) control can inform low-level
controllers (subcortical pattern-generators) to generate appropriate motor commands – a challenge
faced by biological and artificial agents moving through the world.
项目摘要:
是嘲笑笑话还是参加活泼的辩论,我们会灵活地修改我们的语音
在社会背景下。这种适应性行为需要对电动机输出进行实时调整
对快速变化的感觉输入的响应。大脑如何完成这一感觉运动壮举?
开拓性研究表明,许多人的大脑区域在许多
物种(例如Dropophila,斑马雀,果man,小鼠),但是产生声音的神经回路
灵活性仍然很少理解。人声灵活性,例如在对话中,需要自愿,
与上下文有关声音生产的控制。在哺乳动物中,基于人脑病变,基因
已经提出了表达曲线和一级皮质控制中的神经生理学数据来执行
对声音产生的自愿控制。但是,这个想法的直接证据很少,中立
尤其是在哺乳动物中,尤其是在哺乳动物中的电路级机制仍然未知。
寻找合适的啮齿动物模型将补充初级的先前工作,并将允许
电路级机制要决定。阿尔斯顿的唱歌老鼠(S. Teguina),高度声音啮齿动物
从中美洲的云森林中,非常适合研究灵活的人声行为。歌唱
老鼠表现出显着的人声灵活性,在变量,超声声音之间切换(USV)
并根据社会背景而定义,人为可听的歌曲。相反,大多数啮齿动物
包括实验室小鼠(M. musculus)仅产生USV,尚不知道参与声乐
互动。唱歌的小鼠和实验室小鼠的体型大致相同,大脑切片s。teguina
首先,瞥见与肌肉菌的没有区别。神经电路差异
这种剧烈的行为差异是未知的。在这里,我们建议测试是否能力
唱歌老鼠在社交环境中灵活地应用发声,并且在大多数其他啮齿动物中都缺乏发声
物种取决于运动皮质功能,通过下游声带生产回路起作用。
使用慢性电生理学(AIM 1),单细胞比较连接组学(AIM 2),我们将
确定运动皮层在自然声行为中的作用,并比较皮质连通性
和两个物种之间的功能。在AIM 3中,我们将操纵电路确定其因果关系
在每个物种中的各种人声行为中的作用。通过映射,测量和操纵皮质
圈子,我们将学习运动皮层如何调节社交服务的行为灵活性
沟通。从更广泛的角度来看,这些实验将提供一个系统级别的框架来研究
分层电动机控制电路 - 例如,高级(皮质)控制能够为低水平提供信息
控制器(皮层下模式生成器)生成适当的电动机命令 - 挑战
面对生物和人造药物的面对世界。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ARKARUP BANERJEE其他文献
ARKARUP BANERJEE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
臂旁核区域损伤致长时程“昏迷样”动物模型建立及神经机制研究
- 批准号:81901068
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
三江源大型野生食草动物对区域草畜平衡状态影响及管控机制研究
- 批准号:41971276
- 批准年份:2019
- 资助金额:58 万元
- 项目类别:面上项目
基于组蛋白H3K9me3和DNA甲基化修饰协同作用研究早期胚胎发育过程中基因印记区域的调控
- 批准号:31801059
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
使用三代测序技术研究线粒体DNA非编码区域对其DNA复制和转录的调控
- 批准号:31701089
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
转录因子Msx1与哺乳动物上腭发育的前-后区域化
- 批准号:31771593
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Isolating causal roles of norepinephrine neuromodulation in mediating distinct components of attention control
分离去甲肾上腺素神经调节在介导注意力控制的不同组成部分中的因果作用
- 批准号:
10667842 - 财政年份:2023
- 资助金额:
$ 211.91万 - 项目类别:
Neural and Computational Architecture for Complex Navigation and Subjective Self-Location
用于复杂导航和主观自定位的神经和计算架构
- 批准号:
10664227 - 财政年份:2023
- 资助金额:
$ 211.91万 - 项目类别:
Ventral hippocampal encoding of anxiety representations is shaped by thalamic input.
焦虑表征的腹侧海马编码是由丘脑输入决定的。
- 批准号:
10723104 - 财政年份:2022
- 资助金额:
$ 211.91万 - 项目类别:
Uncovering cell type-specific prefrontal neural mechanisms of visuospatial selective attention in freely behaving mice using a high-throughput touchscreen-based training system
使用基于高通量触摸屏的训练系统揭示自由行为小鼠视觉空间选择性注意的细胞类型特异性前额神经机制
- 批准号:
10652656 - 财政年份:2022
- 资助金额:
$ 211.91万 - 项目类别: