Neural Mechanisms that Underlie Flexible Sensory Control of Behavioral States in C. elegans
线虫行为状态灵活感觉控制的神经机制
基本信息
- 批准号:10659880
- 负责人:
- 金额:$ 38.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:Afferent NeuronsAnimal FeedAnimalsArchitectureBehaviorBehavior ControlBehavioralBrainCaenorhabditis elegansCalciumCellsChemoreceptorsComplexCouplingCuesDataDesire for foodDetectionEnvironmentExhibitsExposure toFoodFood deprivation (experimental)GenerationsGeneticImageImaging DeviceIngestionIntestinesLinkLocomotionLogicMediatingMetabolicMolecularMovementNematodaNervous SystemNeural PathwaysNeuromodulatorNeuronsNeurosciencesOdorsPartner in relationshipPathway interactionsPhysiologicalPopulationPopulation ControlProbabilitySatiationSensorySensory ReceptorsSignal TransductionSmell PerceptionSourceSpeedStarvationSynapsesSystemWorkbehavior influencebehavior predictionbehavior testbehavioral responseexperiencefeedingfightingflexibilityfood environmentgenome-wide analysisneuralneural circuitneuromechanismolfactory receptorreceptor expressionresponsesensory systemstressortool
项目摘要
The behavioral state of an animal – whether it is active, inactive, mating, or fighting – profoundly influences
how it generates behavioral responses to environmental cues. However, because the environment is
constantly changing, animals often switch behavioral states in a sensory-driven manner. Over longer
timescales, experience and physiological changes may further bias animals towards certain states. For
example, a starved animal may exhibit a higher probability of switching to a stable dwell ing state upon
smelling a food odor, compared to a fed animal. How the nervous system flexibly changes so that animals
generate context-appropriate behavioral states remains poorly understood. To understand how sensory
cues influence behavioral states and how the links between sensory cues and behavioral states can flexibly
change, it will be critical to examine how neurons at the sensory periphery feed into key neural populations
that control behavioral states. Physiological changes like starvation may influence sensory circuits
themselves, as well as the interactions of these circuits with downstream neurons that control behavioral
states. The C. elegans nervous system is particularly attractive for these types of whole-circuit problems in
neuroscience because (a) it consists of exactly 302 neurons, (b) every neuron can be identified in every
animal, (c) the synaptic connections between these neurons are known, and (d) genetic tools allow us to
manipulate single cells in this system. While feeding, C. elegans switch between two stable behavioral
states: dwelling states, where they reduce their movement to exploit a food patch, and roaming states, where
they display fast locomotion to explore for a better food source. The generation of roaming and dwelling
states is influenced by the animal’s ingestion of food, detection of olfactory cues, and satiety. Although it is
clear that these states are influenced by olfactory cues and satiety, the molecular pathways and neural
circuits that mediate these effects are poorly understood. Here, we propose to build off new preliminary data
that gives us a unique opportunity to uncover these mechanisms. We found that food deprivation leads to a
broad change in olfactory receptor expression in food-sensing olfactory neurons, which in turn impacts the
roaming/dwelling state of the animal. We have also characterized the functional architecture of the core
neural circuit that generates roaming and dwelling states. This now gives us an opportunity to examine how
inputs from a defined set of chemosensory neurons (whose sensory receptors dynamically change) are
integrated by downstream circuits to flexibly control behavioral states. We will first uncover molecular and
neural pathways that allow diverse external and internal cues to modulate olfactory receptor expression in
defined C. elegans neurons (Aim 1). Then, we will examine how ensembles of chemosensory neurons
influence activity in the roaming-dwelling circuit across satiety states (Aim 2). This work will result in a new
paradigm for understanding how populations of neurons at the sensory periphery flexibly control behavior.
动物的行为状态——无论是活跃、不活跃、交配还是战斗——都会深刻地影响
它如何对环境线索产生行为反应然而,因为环境是。
不断变化的动物经常以感官驱动的方式切换行为状态。
时间尺度、经验和生理变化可能会进一步使动物偏向某些状态。
例如,饥饿的动物可能会表现出更高的概率切换到稳定的居住状态
与吃饱的动物相比,闻到食物的气味后,动物的神经系统如何灵活变化。
产生适合情境的行为状态仍然知之甚少。
线索影响行为状态以及感官线索与行为状态之间的联系如何灵活
变化,检查感觉外围的神经元如何进入关键神经群体至关重要
控制行为状态的生理变化(例如饥饿)可能会影响感觉回路。
本身,以及这些电路与控制行为的下游神经元的相互作用
线虫神经系统对于解决这些类型的全电路问题特别有吸引力。
神经科学,因为 (a) 它由 302 个神经元组成,(b) 每个神经元都可以被识别
动物,(c)这些神经元之间的突触连接是已知的,(d)遗传工具使我们能够
操纵该系统中的单个细胞,线虫在进食时在两种稳定的行为之间切换。
州:居住州,他们减少迁徙以开发食物区;以及漫游州,他们在这些州
它们表现出快速的运动来探索更好的食物来源。
状态受到动物摄入食物、嗅觉线索的检测和饱腹感的影响。
很明显,这些状态受到嗅觉线索和饱腹感、分子途径和神经元的影响。
我们对调节这些效应的电路知之甚少,我们建议建立新的初步数据。
这给了我们一个独特的机会来揭示这些机制,我们发现食物匮乏会导致
食物感应嗅觉神经元中嗅觉受体表达的广泛变化,进而影响
我们还描述了动物的漫游/居住状态。
现在我们有机会研究如何产生漫游和停留状态。
来自一组定义的化学感应神经元(其感觉受体动态变化)的输入是
由下游电路集成以灵活控制行为状态我们将首先揭示分子和
允许多种外部和内部线索调节嗅觉受体表达的神经通路
定义线虫神经元(目标 1)然后,我们将研究化学感应神经元的集合。
影响饱足状态下漫游-居住回路的活动(目标 2)。
理解感觉外围神经元群体如何灵活控制行为的范例。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Willem Flavell其他文献
Steven Willem Flavell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Willem Flavell', 18)}}的其他基金
Brain-wide representations of behavior during aversive internal states in C. elegans
线虫厌恶的内部状态下的全脑行为表征
- 批准号:
10638999 - 财政年份:2023
- 资助金额:
$ 38.21万 - 项目类别:
Dissecting the functional organization of the serotonergic system in C. elegans
剖析线虫血清素系统的功能组织
- 批准号:
10542483 - 财政年份:2020
- 资助金额:
$ 38.21万 - 项目类别:
Dissecting the functional organization of the serotonergic system in C. elegans
剖析线虫血清素系统的功能组织
- 批准号:
10334517 - 财政年份:2020
- 资助金额:
$ 38.21万 - 项目类别:
Dissecting the functional organization of the serotonergic system in C. elegans
剖析线虫血清素系统的功能组织
- 批准号:
10725038 - 财政年份:2020
- 资助金额:
$ 38.21万 - 项目类别:
Dissecting the functional organization of the serotonergic system in C. elegans
剖析线虫血清素系统的功能组织
- 批准号:
10554333 - 财政年份:2020
- 资助金额:
$ 38.21万 - 项目类别:
Neuromodulatory control of collective circuit dynamics in C. elegans
线虫集体回路动力学的神经调节控制
- 批准号:
10207798 - 财政年份:2017
- 资助金额:
$ 38.21万 - 项目类别:
相似国自然基金
基于气味特征信息的动物源性饲料新鲜度检测与评价方法研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
促进中非反刍动物粗饲料利用效率的预处理技术及其作用机制
- 批准号:
- 批准年份:2020
- 资助金额:200 万元
- 项目类别:国际(地区)合作与交流项目
山羊瘤胃纤维降解菌对青贮饲用苎麻的响应机理研究
- 批准号:31501988
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
动物源性饲料中典型PPCPs的风险评估
- 批准号:31572443
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
香蕉植株上乳酸菌的系统分类学研究及其在香蕉副产物及残次果饲料调制加工中的应用
- 批准号:31460621
- 批准年份:2014
- 资助金额:50.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Neural and molecular mechanisms of microbe-sensing in the control of animal behavior - Resubmission - 1
微生物传感控制动物行为的神经和分子机制 - 重新提交 - 1
- 批准号:
10315486 - 财政年份:2021
- 资助金额:
$ 38.21万 - 项目类别:
Neural and molecular mechanisms of microbe-sensing in the control of animal behavior - Resubmission - 1
微生物传感控制动物行为的神经和分子机制 - 重新提交 - 1
- 批准号:
10412977 - 财政年份:2021
- 资助金额:
$ 38.21万 - 项目类别:
Dissecting the functional organization of the serotonergic system in C. elegans
剖析线虫血清素系统的功能组织
- 批准号:
10334517 - 财政年份:2020
- 资助金额:
$ 38.21万 - 项目类别:
Consequence and mechanism of diet-driven vagal remodeling on gut-brain feeding behavior
饮食驱动的迷走神经重塑对肠脑进食行为的影响和机制
- 批准号:
10581535 - 财政年份:2020
- 资助金额:
$ 38.21万 - 项目类别:
Dissecting the functional organization of the serotonergic system in C. elegans
剖析线虫血清素系统的功能组织
- 批准号:
10725038 - 财政年份:2020
- 资助金额:
$ 38.21万 - 项目类别: