Regulation of Cell Cycle progression by the nuclear envelope

核膜对细胞周期进程的调节

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT Under physiological conditions, cells are subjected to mechanical tension that triggers multiple signaling pathways and impacts numerous cellular processes, including cell cycle progression. It is well established that a dysfunction of these tension-sensitive signaling pathways can cause unbalanced proliferation and pathological tissue remodeling; however, the precise molecular pathways remain poorly defined. As cells experience tension, the nucleus undergoes significant morphological changes due to its connection with the cytoskeleton that transmits mechanical force to the nuclear envelope. We recently showed that nuclear flattening activates transcription factors that stimulate G1/S transition, leading us to hypothesize that the nuclear membrane could serve as a tension sensor whose activation is necessary for cell cycle progression. Building on these findings, as well as on the work of others, we will test this hypothesis by applying a combination of biophysics, imaging, and biochemical approaches to define the nuclear tension-sensitive pathways that control cell cycle progression. In Aim #1, we will determine whether RhoA-mediated pathways increase actomyosin contractility and nuclear envelope tension during G1 to stimulate G1/S transition. In Aim#2, we will extend our investigation to the signaling triggered in response to an increase in nuclear tension and we will define how these signaling events promote entry into S phase. In Aim#3, we will determine whether tension transmitted to the nucleus during interphase stimulates mitosis progression. We anticipate that the successful completion of this project will increase our understanding of the tension-sensitive mechanisms controlling cell cycle progression and will identify new pharmacological targets to limit cell proliferation in pathological contexts associated with excessive actomyosin tension.
项目概要/摘要 在生理条件下,细胞受到机械张力,从而触发多种信号传导 途径并影响许多细胞过程,包括细胞周期进程。众所周知 这些张力敏感信号通路的功能障碍会导致不平衡的增殖和病理性病变。 组织重塑;然而,精确的分子途径仍然不清楚。当细胞经历紧张时, 由于细胞核与细胞骨架的连接,细胞核发生显着的形态变化 将机械力传递至核膜。我们最近表明核扁平化激活 刺激 G1/S 转变的转录因子,使我们推测核膜可以 作为张力传感器,其激活对于细胞周期进展是必要的。基于这些发现, 以及其他人的工作,我们将通过应用生物物理学、成像、 和生化方法来定义控制细胞周期进程的核张力敏感途径。 在目标#1中,我们将确定 RhoA 介导的途径是否会增加肌动球蛋白的收缩性和核 G1 期间的包络张力刺激 G1/S 过渡。在目标#2 中,我们将把调查范围扩大到 信号传导是为了响应核张力的增加而触发的,我们将定义这些信号传导事件如何 促进进入S期。在目标#3中,我们将确定张力是否在过程中传递到细胞核 间期刺激有丝分裂进展。我们预计该项目的顺利完成将 增加我们对控制细胞周期进程的张力敏感机制的理解,并将 确定新的药理学靶点,以限制与过量相关的病理环境中的细胞增殖 肌动球蛋白张力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christophe Daniel Guilluy其他文献

Christophe Daniel Guilluy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
  • 批准号:
    82360313
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于Pickering纳米乳液脂质诱导肌动球蛋白凝胶的空间位阻效应及其机制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
鱼糜肌动球蛋白的增效转化及其氧化控制分子机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目
低频超声场下肉品肌动球蛋白敏感结构域及其构象变化的作用机制
  • 批准号:
    31901612
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于飞秒激光微纳手术研究亚细胞尺度分子马达网络调控细胞三维运动的生物物理机理
  • 批准号:
    31701215
  • 批准年份:
    2017
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Regulation of Overall Cell Numbers During Epithelial Tissue Homeostasis and Pathogenesis
上皮组织稳态和发病机制中总细胞数量的调节
  • 批准号:
    10621985
  • 财政年份:
    2023
  • 资助金额:
    $ 32.67万
  • 项目类别:
Diversity Supplement to Skeletal Myosin-Binding Protein C Regulation and Structural Dynamics
骨骼肌球蛋白结合蛋白 C 调节和结构动力学的多样性补充
  • 批准号:
    10824055
  • 财政年份:
    2022
  • 资助金额:
    $ 32.67万
  • 项目类别:
Skeletal Myosin-Binding Protein C Regulation and Structural Dynamics
骨骼肌球蛋白结合蛋白 C 调节和结构动力学
  • 批准号:
    10666442
  • 财政年份:
    2022
  • 资助金额:
    $ 32.67万
  • 项目类别:
Roles of Nebulin in Structure and Function of Striated Muscle
星云蛋白在横纹肌结构和功能中的作用
  • 批准号:
    10673594
  • 财政年份:
    2022
  • 资助金额:
    $ 32.67万
  • 项目类别:
Nucleoskeleton-Cytoskeleton Connections and Cell Polarity in Aging
衰老过程中的核骨架-细胞骨架连接和细胞极性
  • 批准号:
    10619511
  • 财政年份:
    2019
  • 资助金额:
    $ 32.67万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了