Ion Channel Transporter Interactions
离子通道转运体相互作用
基本信息
- 批准号:10713968
- 负责人:
- 金额:$ 35.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AffinityAgingAlzheimer&aposs DiseaseAlzheimer&aposs disease brainAlzheimer&aposs disease modelAlzheimer&aposs disease pathologyAlzheimer&aposs disease patientAmino Acid TransporterAmyloid beta-ProteinAxonBiochemicalBloodBrainBrain regionCell physiologyCellsChinese Hamster Ovary CellChoroid Plexus EpitheliumCognitive deficitsComplexCoupledDataDisease modelDrug TargetingEnzymesFamilyFeedbackGeneticGoalsHomeostasisHumanIn VitroIon ChannelLaboratoriesLinkLipidsMetabolismMusNeurodegenerative DisordersNeurofibrillary TanglesNeuronsNeurotransmittersOxidative StressPathogenesisPathologyPhosphatidylinositol 4,5-DiphosphatePhosphatidylinositolsPopulationPotassiumProcessProtein IsoformsProteinsProtonsRanvier&aposs NodesReportingRoleSignal TransductionSignaling MoleculeSodiumTestingThiamineThiamine DeficiencyThiamine PyrophosphateWorkXenopus oocyteabeta accumulationamyloid precursor protein processingbrain tissueglucose metabolismin vivomembermitochondrial dysfunctionmouse modelmyoinositolnervous system disordernovelresponsesolutetau Proteinsvoltage
项目摘要
ABSTRACT
Alzheimer’s disease (AD) is a neurodegenerative disorder that is increasingly prevalent in our aging populations
around the world. AD is characterized by the accumulation of Amyloid-β peptide (Aβ)-containing plaques,
neurofibrillary tangles, and also worsening cognitive deficits. Compelling evidence suggests that thiamine
homeostasis may also be changed in AD. Reduction in thiamine diphosphate (TDP) levels and abnormal
functioning of TDP-dependent key enzymes in glucose metabolism occur in the blood and brains of AD patients.
Thiamine deficiency exacerbates plaque formation and alters the metabolism of Amyloid Precursor Protein
Processing (APP) and/or Aβ in mouse models of AD; many thiamine-dependent processes are diminished in the
brains of AD patients. We previously discovered physical interaction of voltage-gated potassium (Kv) channels
with various solute transporters. We and other groups have since reported a variety of Kv channel-transporter
interactions, both in vitro and in vivo, but their potential role in AD has not been established, neither have
complexes of Kv channels with thiamine transporters been reported. We believe that Kv channel-transporter
complexes form crucial signaling hubs facilitating tight control over highly dynamic cellular processes, and that
their disruption, as we and others have shown, is associated with neurological diseases, and potentially AD.
Here, building on recent preliminary data suggestive of interactions between neuronal KCNQ channels and
thiamine transporters, we aim to test the hypothesis that KCNQ and/or KCNA Kv channels form reciprocally
regulating complexes with the human thiamine transporters THTR-1 and/or THTR-2, which are high-affinity
transporters that concentrate thiamine in cells via a downhill proton gradient. We recently demonstrated that
brains of AD patients as well as those of 5XFAD (AD model) mice express significantly reduced levels of
THTR-1 – building on prior work that demonstrated that thiamine homeostasis is altered in AD, and thiamine
deficiency exacerbates AD pathology. In addition, we also found that various Kv channels, including KCNQ2/3,
form complexes and co-localize in nodes of Ranvier with the APP early cleavage product C99, altering channel
function and in the case of KCNQ2/3 causing channel inhibition. Given these links, we hypothesize that KCNA
and KCNQ channels can form physical complexes with thiamine transporters THTR-1 and/or THTR-2 and thus
regulate one another’s function, and we will study how they change in AD. In two Specific Aims we will first
investigate in vitro existence and functional consequences of channel-transporter complex formation between
KCNA, KCNQ Kv channel α subunits and thiamine transporters THTR-1 and/or THTR-2. Next, we will investigate
possible changes in expression of neuronal KCNA and KCNQ channel isoforms, and their complex formation
with thiamine transporters THTR-1 and/or THTR-2 in different regions of the brains of AD patients and a mouse
model of the disease. At the conclusion of this project, we will have established novel channel-transporter
complexes and determined whether they are altered or have the potential for a role in the pathogenesis of AD.
抽象的
阿尔茨海默病 (AD) 是一种神经退行性疾病,在老龄化人群中越来越普遍
在世界范围内,AD 的特点是含有淀粉样蛋白-β 肽 (Aβ) 的斑块的积累,
令人信服的证据表明,硫胺素会导致神经原纤维缠结,并导致认知缺陷恶化。
AD 中的体内平衡也可能发生改变,二磷酸硫胺素 (TDP) 水平降低并出现异常。
AD 患者的血液和大脑中存在葡萄糖代谢中 TDP 依赖性关键酶的功能。
硫胺素缺乏会恶化斑块形成并改变淀粉样前体蛋白的代谢
AD 小鼠模型中的加工 (APP) 和/或 Aβ;在
我们之前发现了电压门控钾 (Kv) 通道的物理相互作用。
我们和其他小组已经报道了各种 Kv 通道转运蛋白。
体外和体内的相互作用,但它们在 AD 中的潜在作用尚未确定,也没有确定
Kv 通道与硫胺素转运蛋白的复合物已被报道。
复合物形成关键的信号中枢,促进对高度动态的细胞过程的严格控制,并且
正如我们和其他人所表明的,它们的破坏与神经系统疾病以及潜在的 AD 相关。
在这里,基于最近的初步数据表明神经 KCNQ 通道和
硫胺素转运蛋白,我们的目的是检验 KCNQ 和/或 KCNA Kv 通道相互形成的假设
与人硫胺素转运蛋白 THTR-1 和/或 THTR-2 的调节复合物,具有高亲和力
我们最近证明了通过下坡质子梯度将硫胺素浓缩在细胞中的转运蛋白。
AD 患者以及 5XFAD(AD 模型)小鼠的大脑表达的
THTR-1 – 以先前的工作为基础,证明 AD 中硫胺素稳态发生改变,并且硫胺素
此外,我们还发现各种 Kv 通道,包括 KCNQ2/3,
与 APP 早期裂解产物 C99 形成复合物并共定位于 Ranvier 节点,改变通道
功能,并且在 KCNQ2/3 导致通道抑制的情况下,鉴于这些链接,我们捕获了 KCNA。
KCNQ 通道可以与硫胺素转运蛋白 THTR-1 和/或 THTR-2 形成物理复合物,从而
调节彼此的功能,我们将首先研究它们在 AD 中如何变化。
研究通道-转运蛋白复合物形成的体外存在及其功能后果
KCNA、KCNQ Kv 通道 α 亚基和硫胺素转运蛋白 THTR-1 和/或 THTR-2 接下来,我们将进行研究。
神经 KCNA 和 KCNQ 通道亚型表达的可能变化及其复杂的形成
AD 患者和小鼠大脑不同区域的硫胺素转运蛋白 THTR-1 和/或 THTR-2
在这个项目结束时,我们将建立新的通道转运蛋白。
复合物,并确定它们是否被改变或可能在 AD 的发病机制中发挥作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Geoffrey W Abbott其他文献
Crucial role for Sodium Hydrogen Exchangers in SGLT2 inhibitor-induced arterial relaxations
钠氢交换剂在 SGLT2 抑制剂诱导的动脉舒张中的关键作用
- DOI:
10.1101/2023.12.05.570303 - 发表时间:
2023-12-07 - 期刊:
- 影响因子:0
- 作者:
Elizabeth A Forrester;Miguel Benítez;Kaitlyn E. Redford;Tamara Rosenbaum;Geoffrey W Abbott;V. Barrese;Kim A Dora;Anthony P Albert;J. Dannesboe;Isabelle Salles;T. A. Jepps;Iain A Greenwood - 通讯作者:
Iain A Greenwood
Endogenous currents in HEK 293 cells are inhibited by memantine
美金刚抑制 HEK 293 细胞中的内源电流
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:14.8
- 作者:
Neil L Harrison;Geoffrey W Abbott;Conor McClenaghan;Colin G Nichols;D. Cabrera - 通讯作者:
D. Cabrera
Geoffrey W Abbott的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Geoffrey W Abbott', 18)}}的其他基金
Discovering the function of a putative ion channel family linked to inherited diseases
发现与遗传性疾病相关的假定离子通道家族的功能
- 批准号:
9333887 - 财政年份:2017
- 资助金额:
$ 35.98万 - 项目类别:
相似国自然基金
阿尔茨海默病高危风险基因加速认知老化的脑神经机制研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
β-羟丁酸通过hnRNP A1调控Oct4抑制星形胶质细胞衰老影响AD的发生
- 批准号:31900807
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
胰岛素抵抗导致神经元衰老的分子机制及在老年痴呆疾病中的作用研究
- 批准号:91849205
- 批准年份:2018
- 资助金额:200.0 万元
- 项目类别:重大研究计划
载脂蛋白E4基因加速认知老化的脑神经机制研究
- 批准号:31700997
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
慢性睡眠障碍引起阿尔茨海默病tau蛋白病理变化及其表观遗传学机制研究
- 批准号:81771521
- 批准年份:2017
- 资助金额:54.0 万元
- 项目类别:面上项目
相似海外基金
Role of oligodendrocyte-derived IL-33 in brain aging and Alzheimer's disease
少突胶质细胞来源的 IL-33 在大脑衰老和阿尔茨海默病中的作用
- 批准号:
10736636 - 财政年份:2023
- 资助金额:
$ 35.98万 - 项目类别:
Anti-medin immunotherapy for vascular aging and related dementias
针对血管老化和相关痴呆的抗 Medin 免疫疗法
- 批准号:
10724869 - 财政年份:2023
- 资助金额:
$ 35.98万 - 项目类别:
Formation of Tau RNA Complexes disrupts tau function and drives tau neuropathology
Tau RNA 复合物的形成会破坏 tau 功能并驱动 tau 神经病理学
- 批准号:
10777174 - 财政年份:2023
- 资助金额:
$ 35.98万 - 项目类别:
Dopaminergic mechanisms of resilience to Alzheimer's disease neuropathology
阿尔茨海默病神经病理学恢复的多巴胺能机制
- 批准号:
10809199 - 财政年份:2023
- 资助金额:
$ 35.98万 - 项目类别: