Learning novel structure across time and sleep
跨越时间和睡眠学习新颖的结构
基本信息
- 批准号:10657210
- 负责人:
- 金额:$ 39.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-15 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:AnatomyAreaBehaviorBrainCitiesCuesDistantElectroencephalographyEnvironmentFunctional Magnetic Resonance ImagingFutureHippocampusIndividualInterventionKnowledge acquisitionLaboratoriesLearningMemoryMental DepressionMental disordersModelingNatureNeocortexNeural Network SimulationNeuronsParticipantPatternPlayPopulationProcessResearchResolutionScanningSchizophreniaShapesSleepStructureTestingTimeVisitWorkadjudicationexperiencemodel developmentneocorticalneuralnovelpredictive modelingsoundtheories
项目摘要
Project Summary
Acting adaptively requires quickly picking up on structure in our environment (e.g., the layout of a city you are
visiting for the first time) and storing the acquired knowledge for effective future use (efficient navigation on
subsequent visits). Dominant theories of the hippocampus have focused on its ability to encode individual
snapshots of experience, but we and others have found evidence that it is also crucial for finding structure across
experiences (understanding the relationship between different views of the same distant building). The
mechanisms of this essential form of learning have not been established. We have developed a neural network
model of the hippocampus instantiating the theory that one of its subfields can quickly encode structure using
distributed representations, a powerful form of representation in which populations of neurons become
responsive to multiple related features of the environment. The first aim of this project is to test predictions of
this model using high resolution functional magnetic resonance imaging (fMRI) in paradigms requiring integration
of information across experiences. The results will clarify fundamental mechanisms of how we learn novel
structure, adjudicating between existing models of this process, and informing further model development. There
are also competing theories as to the eventual fate of new hippocampal representations. One view posits that
during sleep, the hippocampus replays recent information to build longer-term distributed representations in
neocortex. Another view claims that memories are directly and independently formed and consolidated within
the hippocampus and neocortex. The second aim of this project is to test between these theories. We will assess
changes in hippocampal and cortical representations over time by re-scanning participants and tracking changes
in memory at a one-week delay. Any observed changes in the brain and behavior across time, however, may be
due to generic effects of time or to active processing during sleep. The third aim is thus to assess the specific
causal contributions of sleep to the consolidation of structured information. We will use real-time sleep
electroencephalography (EEG) to detect the peaks of slow oscillations, when endogenous replay is known to
occur, and play sound cues to bias memory reactivation. We will also expand our neural network model to
examine how offline hippocampal replay of recent regularities can shape distributed representations in
neocortex, providing a mechanistic account of offline consolidation of structured information. We expect that this
work will clarify the anatomical substrates and, critically, the nature of the representations that support encoding
and consolidation of novel structure in the environment. Having a robust, neurally grounded model of these
processes will help connect research in this area across laboratories and provide a framework for evaluating
what goes wrong in mental health disorders like depression and schizophrenia that involve profound
disturbances in learning and sleep.
项目摘要
行动适应需要迅速在我们的环境中拾取结构(例如,您是城市的布局
首次访问)并存储获得的知识以进行有效的未来使用(有效导航
随后的访问)。海马的主导理论集中在其编码个人的能力上
经验的快照,但我们和其他人发现证据表明,这对于寻找结构也至关重要
经验(了解同一遥远建筑的不同观点之间的关系)。这
这种基本学习形式的机制尚未建立。我们已经开发了一个神经网络
海马的模型实例化了以下理论,即它的一个子场可以快速使用
分布式表示形式,一种强大的表示神经元种群的形式
响应环境的多个相关特征。该项目的第一个目的是测试预测
该模型在需要集成的范式中使用高分辨率功能磁共振成像(fMRI)
跨经验的信息。结果将阐明我们如何学习新颖的基本机制
结构,在此过程的现有模型之间裁定,并告知进一步的模型开发。那里
关于新的海马表示最终的命运,也是竞争理论。一个观点假定
在睡眠期间,海马重播了最新信息,以构建长期分布式表示形式
新皮层。另一种观点声称记忆是直接和独立形成和合并的
海马和新皮层。该项目的第二个目的是在这些理论之间进行测试。我们将评估
随着时间的流逝,海马和皮质表示的变化通过重新扫描参与者并跟踪变化。
在记忆中以一周的延迟。但是,随着时间的时间的所有观察到的大脑和行为变化可能是
由于时间的通用效果或睡眠期间的主动处理。因此,第三个目的是评估特定
睡眠对结构化信息巩固的因果贡献。我们将使用实时睡眠
脑电图(EEG)检测缓慢振荡的峰,当已知内源性重播已知
发生,并播放声音提示以使记忆重新激活。我们还将将我们的神经网络模型扩展到
检查最近规律性的离线海马重放如何塑造分布式表示形式
NeoCortex,提供了结构化信息离线合并的机理说明。我们期望这
工作将阐明解剖基板,并批评支持编码的表示形式的性质
和环境中新型结构的整合。具有强大的神经扎根模型
流程将有助于连接该领域的研究,并提供评估的框架
抑郁症和精神分裂症等心理健康障碍中出了什么问题,涉及深刻的
学习和睡眠的干扰。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anna C Schapiro其他文献
Anna C Schapiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anna C Schapiro', 18)}}的其他基金
The emergence of abstract structure knowledge across learning and sleep
学习和睡眠中抽象结构知识的出现
- 批准号:
10527095 - 财政年份:2022
- 资助金额:
$ 39.99万 - 项目类别:
The emergence of abstract structure knowledge across learning and sleep
学习和睡眠中抽象结构知识的出现
- 批准号:
10687207 - 财政年份:2022
- 资助金额:
$ 39.99万 - 项目类别:
The Role of Sleep in Insight and Generalization
睡眠在洞察力和概括中的作用
- 批准号:
9123255 - 财政年份:2016
- 资助金额:
$ 39.99万 - 项目类别:
The Role of Sleep in Insight and Generalization
睡眠在洞察力和概括中的作用
- 批准号:
9300726 - 财政年份:2016
- 资助金额:
$ 39.99万 - 项目类别:
相似国自然基金
农产品出口区域化管理对企业和农户的行为决策及经济绩效影响研究
- 批准号:72373067
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
区域压缩对非线性噪声驱动的随机偏微分方程动力学行为影响的研究
- 批准号:12371178
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
长三角地区氯化石蜡的土壤—大气界面交换行为及区域环境影响研究
- 批准号:42307512
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向廊道式TOD(C-TOD)的巨型城市区域轨道交通对居民出行行为时空特征的影响机制研究
- 批准号:42201210
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
时间变区域上三类发展方程解的长时间动力学行为研究
- 批准号:12201142
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
A Neuropeptidergic Neural Network Integrates Taste with Internal State to Modulate Feeding
神经肽能神经网络将味觉与内部状态相结合来调节进食
- 批准号:
10734258 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
Thalamo-prefrontal circuit maturation during adolescence
丘脑-前额叶回路在青春期成熟
- 批准号:
10585031 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
Dissecting the functional organization of local hippocampal circuits underlying spatial representations
剖析空间表征下局部海马回路的功能组织
- 批准号:
10590363 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别: