Multi-Dimensional Outcome Prediction Algorithm for Hospitalized COVID-19 Patients

住院 COVID-19 患者的多维结果预测算法

基本信息

项目摘要

PROJECT SUMMARY Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-mediated coronavirus disease (COVID-19) is an evolutionarily unprecedented natural experiment that causes major changes to the host immune system. Several high risk COVID-19 populations have been identified. Older adults, males, persons of color, and those with certain underlying health conditions (e.g., diabetes mellitus, obesity, etc.) are at higher risk for severe disease from COVID-19. While it is too soon to fully understand the impact of COVID-19 on overall health and well-being, there are already several reports of significant sequelae, which appear to correlate with disease severity. There is a clear and urgent need to develop prediction tests for adverse short- and long-term outcomes, especially for high-risk COVID-19 populations. We hypothesize that complementary multi-dimensional information gathered near the time of symptom onset can be used to predict new onset or worsening frailty, organ dysfunction and death within one year after COVID-19 onset. A single parameter provides limited information and is incapable of adequately characterizing the complex biological responses in symptomatic COVID-19 to predict outcome. Since they were designed for other illnesses, it is unlikely that existing clinical tools, such as respiratory, cardiovascular, and other organ function assessment scores, will precisely assess the long-term prognosis of this novel disease. Our extensive experience in biomarker development suggests that integrating molecular and clinical data increases prediction accuracy of long-term outcomes. We have chosen to test our hypothesis in a population reflecting US-demographics that is at increased risk of adverse outcomes from COVID-19. We will enroll patients, broadly reflecting US demographics, from a hospitalized civilian population in one of the country’s largest metropolitan areas and a representative National Veteran’s population. We anticipate that a prediction test that performs well in this hospitalized patient group will: help guide triaging and treatment decisions and, therefore, reduce morbidity and mortality rates, enhance patient quality of life, and improve healthcare cost-effectiveness. More accurate prognostic information will also assist clinicians in framing goals of care discussions in situations of likely futility and assist patients and families in this decision-making process. Finally, it will provide a logical means for allocating resources in short supply, such as ventilators or therapeutics with limited availability.
项目概要 严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 介导的冠状病毒病 (COVID-19) 是 这是一项进化上前所未有的自然实验,会导致宿主免疫系统发生重大变化。 已确定了一些老年人、男性、有色人种等高风险 COVID-19 人群。 患有某些潜在健康问题(例如糖尿病、肥胖等)的人患严重疾病的风险较高 虽然现在全面了解 COVID-19 对整体健康和健康的影响还为时过早。 健康,已经有几份关于严重后遗症的报告,这些后遗症似乎与疾病相关 显然迫切需要开发针对短期和长期不良结果的预测测试, 特别是对于高风险的 COVID-19 人群,我们采用了互补的多维方法。 在症状发作附近收集的信息可用于预测新的发作或恶化 单一参数可提供 COVID-19 发病后一年内的虚弱、器官功能障碍和死亡。 信息有限,无法充分描述复杂的生物反应 由于它们是针对其他疾病而设计的,因此不太可能通过有症状的 COVID-19 来预测结果。 现有的临床工具,如呼吸、心血管和其他器官功能评估评分,将 我们在生物标志物方面拥有丰富的经验,可以准确评估这种新疾病的长期预后。 发展表明,整合分子和临床数据可以提高长期预测的准确性 我们选择在反映美国人口特征的人群中检验我们的假设。 我们将招募患者,广泛反映美国的情况。 人口统计数据,来自该国最大的都市区之一的住院平民和 我们预计预测测试在这方面表现良好。 住院患者小组将: 帮助指导分诊和治疗决策,从而降低发病率和 死亡率、提高患者的生活质量并提高医疗保健成本效益。 预后信息还将有助于在可能徒劳的情况下制定护理讨论的目标 最后,它将为患者和家属提供一个合理的手段。 分配供应短缺的资源,例如供应有限的呼吸机或治疗药物。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DAVID Owen BEENHOUWER其他文献

DAVID Owen BEENHOUWER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DAVID Owen BEENHOUWER', 18)}}的其他基金

Multi-Dimensional Outcome Prediction Algorithm for Hospitalized COVID-19 Patients
住院 COVID-19 患者的多维结果预测算法
  • 批准号:
    10447721
  • 财政年份:
    2021
  • 资助金额:
    $ 66.11万
  • 项目类别:
Multi-Dimensional Outcome Prediction Algorithm for Hospitalized COVID-19 Patients
住院 COVID-19 患者的多维结果预测算法
  • 批准号:
    10299344
  • 财政年份:
    2021
  • 资助金额:
    $ 66.11万
  • 项目类别:
Enhancing the Delivery of Amphotericin B Across the Blood Brain Barrier for Treatment of Cryptococcal Meningoencephalitis
增强两性霉素 B 穿过血脑屏障的递送以治疗隐球菌性脑膜脑炎
  • 批准号:
    10265385
  • 财政年份:
    2018
  • 资助金额:
    $ 66.11万
  • 项目类别:
Enhancing the Delivery of Amphotericin B Across the Blood Brain Barrier for Treatment of Cryptococcal Meningoencephalitis
增强两性霉素 B 穿过血脑屏障的递送以治疗隐球菌性脑膜脑炎
  • 批准号:
    9898292
  • 财政年份:
    2018
  • 资助金额:
    $ 66.11万
  • 项目类别:
Enhancing the Delivery of Amphotericin B Across the Blood Brain Barrier for Treatment of Cryptococcal Meningoencephalitis
增强两性霉素 B 穿过血脑屏障的递送以治疗隐球菌性脑膜脑炎
  • 批准号:
    9446257
  • 财政年份:
    2018
  • 资助金额:
    $ 66.11万
  • 项目类别:
Antidote for botulism
肉毒杆菌中毒的解毒剂
  • 批准号:
    7739635
  • 财政年份:
    2009
  • 资助金额:
    $ 66.11万
  • 项目类别:
Antidote for botulism
肉毒杆菌中毒的解毒剂
  • 批准号:
    7862592
  • 财政年份:
    2009
  • 资助金额:
    $ 66.11万
  • 项目类别:
Antibody cytokine fusion proteins against Cryptococcus neoformans
新型隐球菌抗体细胞因子融合蛋白
  • 批准号:
    7383656
  • 财政年份:
    2008
  • 资助金额:
    $ 66.11万
  • 项目类别:
Antibody cytokine fusion proteins against Cryptococcus neoformans
新型隐球菌抗体细胞因子融合蛋白
  • 批准号:
    8015629
  • 财政年份:
    2008
  • 资助金额:
    $ 66.11万
  • 项目类别:
Antibody cytokine fusion proteins against Cryptococcus neoformans
新型隐球菌抗体细胞因子融合蛋白
  • 批准号:
    7767749
  • 财政年份:
    2008
  • 资助金额:
    $ 66.11万
  • 项目类别:

相似国自然基金

面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
  • 批准号:
    12371366
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
  • 批准号:
    12301508
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
  • 批准号:
    62303197
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
  • 批准号:
    62303204
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
颜面缺损修复三维目标参照数据构建的区域权重非刚性配准算法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

De novo design of a generalizable protein biosensor platform for point-of-care testing
用于即时测试的通用蛋白质生物传感器平台的从头设计
  • 批准号:
    10836196
  • 财政年份:
    2023
  • 资助金额:
    $ 66.11万
  • 项目类别:
Phylogenetic and computational methods for accurate and efficient analyses of large-scale metagenomics datasets
用于准确有效分析大规模宏基因组数据集的系统发育和计算方法
  • 批准号:
    10542443
  • 财政年份:
    2022
  • 资助金额:
    $ 66.11万
  • 项目类别:
Evolution, transmission, and clinical impacts of SARS-CoV-2 variants among urban and rural populations
城乡人群中 SARS-CoV-2 变种的进化、传播和临床影响
  • 批准号:
    10535916
  • 财政年份:
    2022
  • 资助金额:
    $ 66.11万
  • 项目类别:
Viral Diversity an Innovative Biomarker for Refining Estimates of HIV Incidence
病毒多样性是改进艾滋病毒发病率估计的创新生物标志物
  • 批准号:
    10676203
  • 财政年份:
    2022
  • 资助金额:
    $ 66.11万
  • 项目类别:
Rapidly Adaptable and Mass-Producible Microscopic Chiplets for Minimally-Instrumented Respiratory Viral Screening
用于微仪器呼吸道病毒筛查的快速适应性和可大规模生产的显微芯片
  • 批准号:
    10348469
  • 财政年份:
    2022
  • 资助金额:
    $ 66.11万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了