Multi-Dimensional Outcome Prediction Algorithm for Hospitalized COVID-19 Patients

住院 COVID-19 患者的多维结果预测算法

基本信息

项目摘要

PROJECT SUMMARY Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-mediated coronavirus disease (COVID-19) is an evolutionarily unprecedented natural experiment that causes major changes to the host immune system. Several high risk COVID-19 populations have been identified. Older adults, males, persons of color, and those with certain underlying health conditions (e.g., diabetes mellitus, obesity, etc.) are at higher risk for severe disease from COVID-19. While it is too soon to fully understand the impact of COVID-19 on overall health and well-being, there are already several reports of significant sequelae, which appear to correlate with disease severity. There is a clear and urgent need to develop prediction tests for adverse short- and long-term outcomes, especially for high-risk COVID-19 populations. We hypothesize that complementary multi-dimensional information gathered near the time of symptom onset can be used to predict new onset or worsening frailty, organ dysfunction and death within one year after COVID-19 onset. A single parameter provides limited information and is incapable of adequately characterizing the complex biological responses in symptomatic COVID-19 to predict outcome. Since they were designed for other illnesses, it is unlikely that existing clinical tools, such as respiratory, cardiovascular, and other organ function assessment scores, will precisely assess the long-term prognosis of this novel disease. Our extensive experience in biomarker development suggests that integrating molecular and clinical data increases prediction accuracy of long-term outcomes. We have chosen to test our hypothesis in a population reflecting US-demographics that is at increased risk of adverse outcomes from COVID-19. We will enroll patients, broadly reflecting US demographics, from a hospitalized civilian population in one of the country’s largest metropolitan areas and a representative National Veteran’s population. We anticipate that a prediction test that performs well in this hospitalized patient group will: help guide triaging and treatment decisions and, therefore, reduce morbidity and mortality rates, enhance patient quality of life, and improve healthcare cost-effectiveness. More accurate prognostic information will also assist clinicians in framing goals of care discussions in situations of likely futility and assist patients and families in this decision-making process. Finally, it will provide a logical means for allocating resources in short supply, such as ventilators or therapeutics with limited availability.
项目摘要 严重的急性呼吸道综合征冠状病毒2(SARS-COV-2)介导的冠状病毒病(COVID-19)为 进化前所未有的自然实验,导致宿主免疫系统发生重大变化。 已经确定了几个高风险COVID人群。老年人,男性,有色人种以及 在某些潜在的健康状况(例如糖尿病,肥胖等)的情况下,严重的风险更高 Covid-19的疾病。虽然现在已经完全了解Covid-19对整体健康的影响还为时过早 幸福感,已经有几份有关后遗症的报道,似乎与疾病相关 严重程度。明确而迫切需要为广告进行短期和长期结果的预测测试, 特别是对于高风险的Covid-19人群。我们假设互补的多维 症状发作时收集的信息可用于预测新的发作或担心 脆弱的,器官功能障碍和死亡在Covid-19发作后的一年内。单个参数提供 有限的信息,并且无法充分表征复杂的生物学反应 有症状的Covid-19预测结果。由于它们是为其他疾病而设计的,因此不太可能 现有的临床工具,例如呼吸道,心血管和其他器官功能评估评估,将 精确地评估了这种新型疾病的长期预后。我们在生物标志物方面的丰富经验 发展表明,整合分子和临床数据会提高长期的预测准确性 结果。我们选择在反映美国数字学的人群中检验我们的假设 COVID-19的不良后果风险增加。我们将注册患者,广泛反映我们 人口统计,来自该国最大的大都市之一的住院平民和 代表国家退伍军人的人口。我们预计在此过程中表现良好的预测测试 住院的患者组将:帮助指导分列和治疗决策,因此减少了发病率和 死亡率,提高患者的生活质量并提高医疗保健成本效益。更准确 预后信息还将帮助临床医生在可能徒劳的情况下实现护理讨论的目标 并协助患者和家人进行这一决策过程。最后,它将为 短暂供应资源,例如呼吸机或可用性有限的治疗。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

DAVID Owen BEENHOU...的其他基金

Multi-Dimensional Outcome Prediction Algorithm for Hospitalized COVID-19 Patients
住院 COVID-19 患者的多维结果预测算法
  • 批准号:
    10447721
    10447721
  • 财政年份:
    2021
  • 资助金额:
    $ 66.11万
    $ 66.11万
  • 项目类别:
Multi-Dimensional Outcome Prediction Algorithm for Hospitalized COVID-19 Patients
住院 COVID-19 患者的多维结果预测算法
  • 批准号:
    10299344
    10299344
  • 财政年份:
    2021
  • 资助金额:
    $ 66.11万
    $ 66.11万
  • 项目类别:
Enhancing the Delivery of Amphotericin B Across the Blood Brain Barrier for Treatment of Cryptococcal Meningoencephalitis
增强两性霉素 B 穿过血脑屏障的递送以治疗隐球菌性脑膜脑炎
  • 批准号:
    10265385
    10265385
  • 财政年份:
    2018
  • 资助金额:
    $ 66.11万
    $ 66.11万
  • 项目类别:
Enhancing the Delivery of Amphotericin B Across the Blood Brain Barrier for Treatment of Cryptococcal Meningoencephalitis
增强两性霉素 B 穿过血脑屏障的递送以治疗隐球菌性脑膜脑炎
  • 批准号:
    9898292
    9898292
  • 财政年份:
    2018
  • 资助金额:
    $ 66.11万
    $ 66.11万
  • 项目类别:
Enhancing the Delivery of Amphotericin B Across the Blood Brain Barrier for Treatment of Cryptococcal Meningoencephalitis
增强两性霉素 B 穿过血脑屏障的递送以治疗隐球菌性脑膜脑炎
  • 批准号:
    9446257
    9446257
  • 财政年份:
    2018
  • 资助金额:
    $ 66.11万
    $ 66.11万
  • 项目类别:
Antidote for botulism
肉毒杆菌中毒的解毒剂
  • 批准号:
    7862592
    7862592
  • 财政年份:
    2009
  • 资助金额:
    $ 66.11万
    $ 66.11万
  • 项目类别:
Antidote for botulism
肉毒杆菌中毒的解毒剂
  • 批准号:
    7739635
    7739635
  • 财政年份:
    2009
  • 资助金额:
    $ 66.11万
    $ 66.11万
  • 项目类别:
Antibody cytokine fusion proteins against Cryptococcus neoformans
新型隐球菌抗体细胞因子融合蛋白
  • 批准号:
    7383656
    7383656
  • 财政年份:
    2008
  • 资助金额:
    $ 66.11万
    $ 66.11万
  • 项目类别:
Antibody cytokine fusion proteins against Cryptococcus neoformans
新型隐球菌抗体细胞因子融合蛋白
  • 批准号:
    8015629
    8015629
  • 财政年份:
    2008
  • 资助金额:
    $ 66.11万
    $ 66.11万
  • 项目类别:
Antibody cytokine fusion proteins against Cryptococcus neoformans
新型隐球菌抗体细胞因子融合蛋白
  • 批准号:
    7767749
    7767749
  • 财政年份:
    2008
  • 资助金额:
    $ 66.11万
    $ 66.11万
  • 项目类别:

相似国自然基金

无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
  • 批准号:
    12301508
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
感兴趣区域驱动的主动式采样CT成像算法研究
  • 批准号:
    62301532
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
  • 批准号:
    62303204
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
  • 批准号:
    62303197
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
  • 批准号:
    12371366
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

De novo design of a generalizable protein biosensor platform for point-of-care testing
用于即时测试的通用蛋白质生物传感器平台的从头设计
  • 批准号:
    10836196
    10836196
  • 财政年份:
    2023
  • 资助金额:
    $ 66.11万
    $ 66.11万
  • 项目类别:
Phylogenetic and computational methods for accurate and efficient analyses of large-scale metagenomics datasets
用于准确有效分析大规模宏基因组数据集的系统发育和计算方法
  • 批准号:
    10542443
    10542443
  • 财政年份:
    2022
  • 资助金额:
    $ 66.11万
    $ 66.11万
  • 项目类别:
Viral Diversity an Innovative Biomarker for Refining Estimates of HIV Incidence
病毒多样性是改进艾滋病毒发病率估计的创新生物标志物
  • 批准号:
    10676203
    10676203
  • 财政年份:
    2022
  • 资助金额:
    $ 66.11万
    $ 66.11万
  • 项目类别:
Evolution, transmission, and clinical impacts of SARS-CoV-2 variants among urban and rural populations
城乡人群中 SARS-CoV-2 变种的进化、传播和临床影响
  • 批准号:
    10535916
    10535916
  • 财政年份:
    2022
  • 资助金额:
    $ 66.11万
    $ 66.11万
  • 项目类别:
Rapidly Adaptable and Mass-Producible Microscopic Chiplets for Minimally-Instrumented Respiratory Viral Screening
用于微仪器呼吸道病毒筛查的快速适应性和可大规模生产的显微芯片
  • 批准号:
    10348469
    10348469
  • 财政年份:
    2022
  • 资助金额:
    $ 66.11万
    $ 66.11万
  • 项目类别: