Big Data and Deep Learning for the Interictal-Ictal-Injury Contiuum
发作间期-发作期-损伤连续体的大数据和深度学习
基本信息
- 批准号:10761842
- 负责人:
- 金额:$ 9.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-07 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Project Summary/Abstract: Big Data and Deep Learning for the Interictal-Ictal-Injury Continuum
Brain monitoring in critical care has grown dramatically over the past 20 years with the discovery that a large
proportion of ICU patients suffer from subclinical seizures and seizure-like electrical events, collectively called
“ictal-interictal-injury continuum abnormalities” (IIICAs), detectable only by electroencephalography (EEG). This
growth has created a crisis in critical care: It is clear that IIICAs damage the brain and cause permanent
neurologic disability. Yet detection of IIICAs by expert visual review is often delayed suggesting we need
better tools for real-time monitoring, to cope with the deluge of ICU EEG data. In other cases, IIICAs appear to
be harmless epiphenomena, and many worry that increased awareness of IIICAs has created an epidemic of
overly-aggressive prescribing of anticonvulsant drugs leading to preventable adverse events and costs. This
crisis highlights critical unmet needs for automated EEG monitoring for IIICAs, and a better understanding
of which types of IIICAs cause neural injury and warrant intervention.
Causes of IIICAs range widely, from primary brain injuries like hemorrhagic stroke and intracranial
hemorrhage, to systemic medical illnesses like sepsis and uremia. Until recently, this massive clinical
heterogeneity has been an insurmountable barrier to understanding the impact of IIICAs on neurologic
outcome. However, recent advances in deep learning, coupled with the unprecedented availability of a
massive dataset developed by our team over the last three years, makes it feasible for the first time to
systematically study the relationship between IIICAs and neurologic outcomes.
To meet the need for better monitoring tools and better models for understanding IIICAs, we will take a
deep learning approach to leverage the as-yet untapped information in a massive ICU EEG dataset. We will
pursue three Specific Aims: SA1: Comprehensively label all occurrences of IIICAs in a massive set of
cEEG recordings, thus preparing the EEG data for training computers to detect IIICA patterns; SA2: Develop
supervised DL algorithms to detect IIICAs as accurately as human experts, thus providing powerful tools
for both research on IIICAs and for clinical brain monitoring; SA3: Estimate the effect of IIICAs on
neurologic outcome: we will develop models to quantify effects of IIICAs on risk for disability after controlling
for inciting illness and other clinical factors, and to predict effects of interventions to suppress IIICAs.
This work will provide four crucial benefits to advance the field of precision critical care neurology, and by
extension, our ability to provide optimal neurologic care for patients during critical illness. 1) Improved
understanding of the clinical significance of seizure like IIICA states; 2) development of robust tools and
algorithms for critical care brain telemetry; 3) a unique, massive, publicly available, thoroughly annotated
dataset that will enable other researchers to further advance the field; and 4) a testable model that predicts
which types of cEEG abnormalities warrant aggressive treatment, setting the stage for interventional trials.
项目摘要/摘要:发作间期-发作期-损伤连续体的大数据和深度学习
过去 20 年来,重症监护中的脑部监测得到了显着发展,人们发现,大量
部分 ICU 患者患有亚临床癫痫发作和癫痫样电事件,统称为
“发作期-发作间期-损伤连续异常”(IIICA),只能通过脑电图(EEG)检测到。
增长造成了重症监护危机:很明显,IIICA 会损害大脑并造成永久性的后果
然而,通过专家目视检查对 IIICA 的检测往往会被延迟,这表明我们需要
更好的实时监测工具,以应对 ICU 脑电图数据的洪流 在其他情况下,IIICA 似乎可以。
是无害的副现象,许多人担心 IIICA 意识的增强导致了一种流行病
过度积极地开抗惊厥药物会导致可预防的不良事件和费用。
危机凸显了 IIICA 自动化脑电图监测的关键未满足需求,以及更好的理解
其中哪些类型的 IIICA 会导致神经损伤并需要干预。
IIICA 的病因多种多样,包括出血性中风等原发性脑损伤和颅内损伤
出血,败血症和尿毒症等全身性疾病,直到最近,这种大规模的临床。
异质性一直是理解 IIICA 对神经系统影响的不可逾越的障碍
然而,深度学习的最新进展以及前所未有的可用性。
我们的团队在过去三年中开发的海量数据集首次使
系统地研究 IIICA 与神经系统结果之间的关系。
为了满足对更好的监测工具和更好的模型来理解 IIICA 的需求,我们将采取
我们将采用深度学习方法来利用海量 ICU 脑电图数据集中尚未开发的信息。
追求三个具体目标: SA1:在大量数据中全面标记所有发生的 IIICA
cEEG 记录,从而为训练计算机准备 EEG 数据以检测 IIICA 模式:开发
有监督的深度学习算法可以像人类专家一样准确地检测 IIICA,从而提供强大的工具
对于 IIICA 的研究和临床大脑监测;SA3:估计 IIICA 的影响
神经系统结果:我们将开发模型来量化 IIICA 在控制后对残疾风险的影响
诱发疾病和其他临床因素,并预测抑制 IIICA 干预措施的效果。
这项工作将为推进精准重症监护神经病学领域提供四个关键的好处,
扩展,我们为危重病患者提供最佳神经科护理的能力 1) 提高。
了解 IIICA 状态等癫痫发作的临床意义;2) 开发强大的工具和
重症监护脑部遥测算法;3) 独特的、大规模的、公开的、完整注释的算法;
数据集将使其他研究人员能够进一步推进该领域;4)可测试的预测模型;
哪些类型的 cEEG 异常需要积极治疗,为介入试验奠定了基础。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological Regularization.
STELAR:具有潜在流行病学正则化的时空张量分解。
- DOI:
- 发表时间:2020-12-08
- 期刊:
- 影响因子:0
- 作者:Kargas, Nikos;Qian, Cheng;Sidiropoulos, Nicholas D;Xiao, Cao;Glass, Lucas M;Sun, Jimeng
- 通讯作者:Sun, Jimeng
MolTrans: Molecular Interaction Transformer for drug-target interaction prediction.
MolTrans:用于药物-靶标相互作用预测的分子相互作用变压器。
- DOI:
- 发表时间:2021-05-05
- 期刊:
- 影响因子:0
- 作者:Huang, Kexin;Xiao, Cao;Glass, Lucas M;Sun, Jimeng
- 通讯作者:Sun, Jimeng
DeepPurpose: a deep learning library for drug-target interaction prediction.
DeepPurpose:用于药物-靶标相互作用预测的深度学习库。
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Huang, Kexin;Fu, Tianfan;Glass, Lucas M;Zitnik, Marinka;Xiao, Cao;Sun, Jimeng
- 通讯作者:Sun, Jimeng
MOLER: Incorporate Molecule-Level Reward to Enhance Deep Generative Model for Molecule Optimization.
MOLER:结合分子级奖励来增强分子优化的深层生成模型。
- DOI:
- 发表时间:2022-11
- 期刊:
- 影响因子:8.9
- 作者:Fu, Tianfan;Xiao, Cao;Glass, Lucas M;Sun, Jimeng
- 通讯作者:Sun, Jimeng
Synthesize Extremely High-dimensional Longitudinal Electronic Health Records via Hierarchical Autoregressive Language Model.
通过分层自回归语言模型合成极高维的纵向电子健康记录。
- DOI:
- 发表时间:2023-03-10
- 期刊:
- 影响因子:0
- 作者:Theodorou, Brandon;Xiao, Cao;Sun, Jimeng
- 通讯作者:Sun, Jimeng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Brandon Westover其他文献
Michael Brandon Westover的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Brandon Westover', 18)}}的其他基金
Data-Driven Sleep Biomarkers of Brain Health, Heart Health, and Mortality
数据驱动的大脑健康、心脏健康和死亡率的睡眠生物标志物
- 批准号:
10758996 - 财政年份:2022
- 资助金额:
$ 9.1万 - 项目类别:
Data-Driven Sleep Biomarkers of Brain Health, Heart Health, and Mortality
数据驱动的大脑健康、心脏健康和死亡率的睡眠生物标志物
- 批准号:
10684096 - 财政年份:2022
- 资助金额:
$ 9.1万 - 项目类别:
Big Data and Deep Learning for the Interictal-Ictal-Injury Continuum
发作间期-发作期-损伤连续体的大数据和深度学习
- 批准号:
10398908 - 财政年份:2018
- 资助金额:
$ 9.1万 - 项目类别:
Investigation of Sleep in the Intensive Care Unit (ICU-SLEEP)
重症监护病房睡眠调查(ICU-SLEEP)
- 批准号:
10372017 - 财政年份:2018
- 资助金额:
$ 9.1万 - 项目类别:
Big Data and Deep Learning for the Interictal-Ictal-Injury Continuum
发作间期-发作期-损伤连续体的大数据和深度学习
- 批准号:
9769180 - 财政年份:2018
- 资助金额:
$ 9.1万 - 项目类别:
Quantitative Monitoring and Control of Sedation and Pain in the ICU Environment
ICU 环境中镇静和疼痛的定量监测和控制
- 批准号:
8908065 - 财政年份:2014
- 资助金额:
$ 9.1万 - 项目类别:
Quantitative Monitoring and Control of Sedation and Pain in the ICU Environment
ICU 环境中镇静和疼痛的定量监测和控制
- 批准号:
9313343 - 财政年份:2014
- 资助金额:
$ 9.1万 - 项目类别:
Quantitative Monitoring and Control of Sedation and Pain in the ICU Environment
ICU 环境中镇静和疼痛的定量监测和控制
- 批准号:
8616877 - 财政年份:2014
- 资助金额:
$ 9.1万 - 项目类别:
相似国自然基金
基于地理空间大数据的干旱区浅层地下水埋深模拟与评价
- 批准号:42361068
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
多源数据约束的超深断溶体油藏流动通道与溶洞结构反演方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
全波至自适应聚焦高斯束偏移方法研究及其在川东北-大巴山盆山结合带深反射地震数据的应用
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
使用深图像数据研究局域星系的演化
- 批准号:
- 批准年份:2020
- 资助金额:15 万元
- 项目类别:国际(地区)合作与交流项目
面向临床电子医疗数据的深图网络构建
- 批准号:
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
相似海外基金
Unsupervised Deep Photon-Counting Computed Tomography Reconstruction for Human Extremity Imaging
用于人体肢体成像的无监督深度光子计数计算机断层扫描重建
- 批准号:
10718303 - 财政年份:2023
- 资助金额:
$ 9.1万 - 项目类别:
Risk stratifying indeterminate pulmonary nodules with jointly learned features from longitudinal radiologic and clinical big data
利用纵向放射学和临床大数据共同学习的特征对不确定的肺结节进行风险分层
- 批准号:
10678264 - 财政年份:2023
- 资助金额:
$ 9.1万 - 项目类别:
Three-dimensional fluorescence imaging flow cytometry at up to million frames per second
每秒高达百万帧的三维荧光成像流式细胞术
- 批准号:
10568627 - 财政年份:2023
- 资助金额:
$ 9.1万 - 项目类别:
Identifying and addressing missingness and bias to enhance discovery from multimodal health data
识别和解决缺失和偏见,以增强多模式健康数据的发现
- 批准号:
10637391 - 财政年份:2023
- 资助金额:
$ 9.1万 - 项目类别: