Sepsis Physiomarkers for Appropriate Risk Knowledge of monitored patients in the ICU (SPARK-ICU)
用于对 ICU 中受监测患者进行适当风险了解的脓毒症生理标志物 (SPARK-ICU)
基本信息
- 批准号:10655628
- 负责人:
- 金额:$ 51.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-10 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AcuteAdmission activityAdultAlgorithmsBlood PressureBolus InfusionCessation of lifeCharacteristicsClinicalClinical DataComplexComputerized Medical RecordCritical IllnessDataData SourcesDeteriorationDevelopmentEffectiveness of InterventionsElectrocardiogramElectrophysiology (science)EncapsulatedFaceFluid BalanceFluid TherapyFunctional disorderFundingFutilityGeneral WardGoalsHealthHeterogeneityHospital MortalityHospitalizationHospitalsHourHumanInstitutionIntensive Care UnitsInterventionKnowledgeLength of StayLiteratureMachine LearningManualsMathematicsMeasuresMedicareMedicineMethodsModelingMorbidity - disease rateMultiple Organ FailureOrganOutcomePatient AdmissionPatient MonitoringPatientsPhenotypePhysiologicalPhysiologyPopulationRecoveryReportingReproducibilityResourcesRiskRoleSepsisSeveritiesShockSignal TransductionStreamStructureTestingTimeTrainingTranslationsTreatment EfficacyUniversitiesVulnerable PopulationsWorkclinical decision-makingclinical phenotypeclinical practicecomputer sciencedata streamsday lengthdifferential expressionhemodynamicshigh riskimprovedimproved outcomeinsightknowledge integrationlearning algorithmmachine learning algorithmmachine learning methodmachine learning predictionmachine learning prediction algorithmmortalitymortality risknovelnovel markerpediatric sepsispoint of carepredictive modelingprogramssecondary infectionsensorseptic patientssignal processingstructured datatargeted treatmenttool
项目摘要
Project Summary
Critically ill patients admitted to the ICU who develop secondary infection and sepsis, can face up to a five-fold
increase in the risk for death when compared to non-sepsis patients. The majority of patients who developed
secondary infections are more critically ill at admission and therefore require significantly greater resources.
Traditional machine learning algorithms for predicting sepsis has been largely focused and relied on the use of
structured data from the electronic medical record (EMR), however the EMR was developed largely as a billing
mechanism and an audit log for clinical workflow. Hence, much of the structure and availability of data are often
time-delayed, prone to errors from manual entry, biases from various institutional, personal and training biases,
and finally contain a significant amount of missing data. In this proposal, we seek to discover novel
`physiomarkers' extracted from continuous physiological data streams, generated from non-human derived data
sources, that predict the onset of sepsis in this critical population. Using such routinely collected data, along with
common clinical indicators extracted from the EMR, we propose to generate robust machine learning algorithms
that can be more generalized, reproducible and removed from the biases and pitfalls of manual data entry. We
propose that such classes of models not only may alert clinicians to acute and critically ill patients at risk for
developing sepsis in real-time, but also investigate intervention effectiveness, such as volume responsiveness
and support the discovery of novel sub-types of sepsis. Secondly, much of the existing literature on predictive
models for sepsis focus on hospitalized patients in the general ward, however, models that predict the onset of
sepsis among patients who developed secondary infections after admission to the ICU is limited. In our previous
work, we have demonstrated that markers discovered from continuous numeric data streams can inform earlier
prediction of sepsis in children and adults. However, those analysis did not use high-fidelity data from the
waveforms, which encapsulate rich characteristics of physiology. Therefore, by emphasizing the discovery of
such novel markers and through the application of data-driven learning algorithms, we expect to develop
algorithms and tools that improve our understanding of the changing physiologic dynamics of sepsis in critically
ill patient. In this proposed program, we will integrate knowledge across a number of distinctive expertise that
spans signal processing, mathematics, computer science and medicine to develop sophisticated tools that can
analyze such data to reveal meaningful insight. In short, we will contribute significant knowledge about the role
and utility of complex physiological interactions that are at present abundantly available in clinical practice but
seldom used for clinical decision making.
项目摘要
患病患者患有患病的患者,患有继发性感染和败血症的ICU,最多可以面对五倍
与非七居患者相比,死亡风险增加。大多数发育的患者
次要感染在入院时更为严重,因此需要更大的资源。
用于预测脓毒症的传统机器学习算法主要集中于
来自电子病历(EMR)的结构化数据,但是EMR主要是作为计费开发的
机制和临床工作流程的审核日志。因此,数据的大部分结构和可用性通常是
延期的,容易出现手动输入中的错误,来自各种机构,个人和培训偏见的偏见,
最后包含大量丢失的数据。在此提案中,我们试图发现小说
从非人类衍生数据产生的连续生理数据流中提取的“物理标志物”
来源,可以预测这一关键人群中败血症的发作。使用此类常规收集的数据以及
从EMR提取的常见临床指标,我们建议生成强大的机器学习算法
这可以更概括,可再现并从手动数据输入的偏见和陷阱中删除。我们
建议这样一类模型不仅会提醒临床医生急性和重病患者有风险
实时开发败血症,同时还要研究干预效果,例如体积响应能力
并支持发现败血症的新型子类型。其次,关于预测性的许多现有文献
但是
入院ICU后发生继发感染的患者中的败血症是有限的。在我们的上一个
工作,我们已经证明了从连续数字数据流中发现的标记可以早期告知
在儿童和成人中预测败血症。但是,这些分析没有使用来自
波形,它封装了生理的丰富特征。因此,通过强调发现
这种新颖的标记以及通过数据驱动的学习算法的应用,我们希望开发
算法和工具,可以提高我们对败血症不断变化的生理动态的理解
病患者。在此拟议的计划中,我们将纳入许多独特的专业知识的知识
跨越信号处理,数学,计算机科学和医学,以开发可以使用的复杂工具
分析此类数据以揭示有意义的见解。简而言之,我们将为角色提供重要的知识
目前在临床实践中大量可用的复杂生理相互作用的效用
很少用于临床决策。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rishikesan Kamaleswaran其他文献
Rishikesan Kamaleswaran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rishikesan Kamaleswaran', 18)}}的其他基金
EQuitable, Uniform and Intelligent Time-based conformal Inference (EQUITI) Framework
公平、统一和智能的基于时间的共形推理 (EQUITI) 框架
- 批准号:
10599622 - 财政年份:2021
- 资助金额:
$ 51.84万 - 项目类别:
Sepsis Physiomarkers for Appropriate Risk Knowledge of monitored patients in the ICU (SPARK-ICU)
用于对 ICU 中受监测患者进行适当风险了解的脓毒症生理标志物 (SPARK-ICU)
- 批准号:
10295735 - 财政年份:2021
- 资助金额:
$ 51.84万 - 项目类别:
相似海外基金
Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
- 批准号:
10748859 - 财政年份:2024
- 资助金额:
$ 51.84万 - 项目类别:
Mixed methods examination of warning signs within 24 hours of suicide attempt in hospitalized adults
住院成人自杀未遂 24 小时内警告信号的混合方法检查
- 批准号:
10710712 - 财政年份:2023
- 资助金额:
$ 51.84万 - 项目类别:
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
- 批准号:
10715238 - 财政年份:2023
- 资助金额:
$ 51.84万 - 项目类别:
1/2: PREcision VENTilation to attenuate Ventilation-Induced Lung Injury (PREVENT VILI)
1/2:精确通气以减轻通气引起的肺损伤(预防 VILI)
- 批准号:
10738958 - 财政年份:2023
- 资助金额:
$ 51.84万 - 项目类别:
Cardiomyocyte self-defense against Streptococcus pneumoniae
心肌细胞对抗肺炎链球菌的自我防御
- 批准号:
10639102 - 财政年份:2023
- 资助金额:
$ 51.84万 - 项目类别: