Data Management Core
数据管理核心
基本信息
- 批准号:10698039
- 负责人:
- 金额:$ 24.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-07 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAchievementAddressApplications GrantsBioinformaticsBiometryClinicalCollaborationsCommunicationConsultationsDataData AnalysesData AnalyticsData CollectionData CorrelationsData SecurityData SetDetectionDevelopmentDoctor of PhilosophyEvaluationExperimental DesignsFacultyFeedbackFosteringFundingGenomicsGoalsHealthIndividualInformation SystemsInfrastructureInvestigationLinkLocationMedical InformaticsMedical centerMethodologyMethodsMonitorOntologyPlayPoliciesPostdoctoral FellowPreparationProgram Research Project GrantsProteomicsPublic Health InformaticsPublic Health SchoolsQualifyingQuality ControlRecommendationResearchResearch PersonnelResearch Project GrantsResearch TrainingResourcesRiskRisk AssessmentRoleSample SizeScheduleScienceScientistSecureStatistical Data InterpretationSuggestionSuperfundTerminologyTestingToxicologyTraining ProgramsTraining and EducationWater PollutantsWorkbiomedical informaticsdata accessdata integrationdata interoperabilitydata managementdata qualitydata repositorydata sharingdata standardsdesigndetection limitdrinking waterexperiencehigh dimensionalityimprovedinnovationinnovative technologiesinteroperabilitylarge datasetsmeetingsopen datapre-doctoralprogramsquality assurancespatiotemporalstatistical centerstatistics
项目摘要
Summary/Abstract:
The Data Management and Analysis Core (DMAC) will provide the Yale Superfund Research Program
(YSRTP) with a state of the art data management, bioinformatics and environmental statistics infrastructure that
will serve as a focal point for integrated data management and analytics across YSRTP projects and cores. The
proposed YSRTP research projects will yield a significant amount of data with a range of types and features that
will require a robust data management component, systematic bioinformatics analyses for various omics data,
and sophisticated statistical analyses including but not limited to methods for spatially and spatiotemporally
correlated data, high dimensionality, large datasets, and missingness (e.g., limits of detection). Thus, DMAC will
be critical to the functioning of the YSRTP and leverages the expertise from the Yale School of Public Health
Department of Biostatistics and its Division of Health Informatics along with value-added expertise provided by
their affiliated centers: Yale Center for Analytical Sciences, Yale Center for Medical Informatics and Yale Center
for Statistical Genomics and Proteomics. Given these resources, DMAC will provide ready access to well-
qualified, experienced clinical informaticians, biostatisticians and bioinformaticians who have previously
established, successful collaborations with many of the investigators in the YSRTP. The expertise provided will
include a full spectrum of consultations with PhD-level faculty for data capture and management, and design and
analysis of projects. DMAC will manage the data flow within and beyond this YSRTP program and will work
closely with all cores and project scientists to integrate the data from all projects to develop and test scientific
hypotheses. DMAC will also serve as a hub for providing feedback to project scientists to drive further scientific
investigations and innovation to advance the aims and objectives of the YSRTP. To achieve these objectives,
DAMC will focus on three specific aims: Aim 1: Coordination with Projects and Cores; Aim 2: Fostering Data
Sharing and Interoperability and Aim 3: Data Quality Assurance, Quality Control and Data Integration.
Achievement of these aims and objectives promises to significantly accelerate the overall objective of the YSRTP
to foster and conduct research that improves the detection, toxicological evaluation, risk assessment, mitigation
and forecasting of emerging contaminants in drinking water.
摘要/摘要:
数据管理和分析核心(DMAC)将提供耶鲁超级基金研究计划
(YSRTP)拥有最先进的数据管理、生物信息学和环境统计基础设施,
将作为 YSRTP 项目和核心的集成数据管理和分析的焦点。这
拟议的 YSRTP 研究项目将产生大量具有各种类型和特征的数据,
将需要强大的数据管理组件,对各种组学数据进行系统的生物信息学分析,
和复杂的统计分析,包括但不限于空间和时空方法
相关数据、高维度、大数据集和缺失(例如检测极限)。因此,DMAC 将
对 YSRTP 的运作至关重要,并利用耶鲁大学公共卫生学院的专业知识
生物统计系及其健康信息学部以及以下机构提供的增值专业知识
其附属中心:耶鲁分析科学中心、耶鲁医学信息学中心和耶鲁中心
用于统计基因组学和蛋白质组学。有了这些资源,DMAC 将提供对以下资源的现成访问:
合格且经验丰富的临床信息学家、生物统计学家和生物信息学家
与 YSRTP 的许多研究人员建立了成功的合作。所提供的专业知识将
包括与博士级教师进行全方位的数据采集和管理咨询,以及设计和
项目分析。 DMAC 将管理此 YSRTP 计划内部和外部的数据流,并将正常工作
与所有核心和项目科学家密切合作,整合所有项目的数据来开发和测试科学
假设。 DMAC 还将作为向项目科学家提供反馈以推动进一步科学发展的中心
调查和创新,以推进 YSRTP 的宗旨和目标。为了实现这些目标,
DAMC 将重点关注三个具体目标: 目标 1:与项目和核心的协调;目标 2:培育数据
共享和互操作性以及目标 3:数据质量保证、质量控制和数据集成。
这些目的和目标的实现有望显着加速YSRTP的总体目标的实现
促进和开展改进检测、毒理学评估、风险评估、缓解的研究
和预测饮用水中新出现的污染物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HONGYU ZHAO其他文献
HONGYU ZHAO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HONGYU ZHAO', 18)}}的其他基金
Statistical Methods for Genetic Risk Predictions across Diverse Populations
不同人群遗传风险预测的统计方法
- 批准号:
10662188 - 财政年份:2022
- 资助金额:
$ 24.66万 - 项目类别:
Statistical Methods for Genetic Risk Predictions across Diverse Populations
不同人群遗传风险预测的统计方法
- 批准号:
10391800 - 财政年份:2022
- 资助金额:
$ 24.66万 - 项目类别:
Statistical Methods for Genetic Risk Predictions across Diverse Populations
不同人群遗传风险预测的统计方法
- 批准号:
10731582 - 财政年份:2022
- 资助金额:
$ 24.66万 - 项目类别:
Statistical Methods for Analyzing Birth Defects Cohorts
分析出生缺陷队列的统计方法
- 批准号:
10372041 - 财政年份:2021
- 资助金额:
$ 24.66万 - 项目类别:
Lost-of-function variants in the 1000 genomes data set and implications to GWAS
1000 个基因组数据集中的功能丧失变异及其对 GWAS 的影响
- 批准号:
7882977 - 财政年份:2010
- 资助金额:
$ 24.66万 - 项目类别:
Lost-of-function variants in the 1000 genomes data set and implications to GWAS
1000 个基因组数据集中的功能丧失变异及其对 GWAS 的影响
- 批准号:
8141451 - 财政年份:2010
- 资助金额:
$ 24.66万 - 项目类别:
International Symposium on Genome-Wide Association Studies
全基因组关联研究国际研讨会
- 批准号:
7193776 - 财政年份:2006
- 资助金额:
$ 24.66万 - 项目类别:
相似国自然基金
共和盆地东北部地区隆升剥蚀过程对干热岩形成就位的影响:来自低温热年代学的制约
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
朱鹮野生种群营养生态位对繁殖成就的影响及保护对策研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
成就目标视角下建言韧性的形成机制与作用效果研究
- 批准号:72102228
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于目标成就评量的社区中医药健康管理服务评价及优化策略研究
- 批准号:71874047
- 批准年份:2018
- 资助金额:49.0 万元
- 项目类别:面上项目
科研人员流动与职业成就的关系研究
- 批准号:71874049
- 批准年份:2018
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Core A: Administrative, Career Development, and Research Integration Core
核心 A:行政、职业发展和研究整合核心
- 批准号:
10630466 - 财政年份:2023
- 资助金额:
$ 24.66万 - 项目类别:
Assessing Clinical Effectiveness and Implementation of Worksite Sleep Health Coaching in Firefighters
评估消防员工作现场睡眠健康指导的临床效果和实施情况
- 批准号:
10585123 - 财政年份:2023
- 资助金额:
$ 24.66万 - 项目类别:
Identifying barriers to optimizing data sharing and accelerate discovery in Alzheimer’s disease and related dementia research
识别优化数据共享和加速阿尔茨海默病及相关痴呆症研究发现的障碍
- 批准号:
10568214 - 财政年份:2023
- 资助金额:
$ 24.66万 - 项目类别:
Tele-Sox: A Tele-Medicine solution based on wearables and gamification to prevent Venous thromboembolism in Oncology Geriatric Patients
Tele-Sox:基于可穿戴设备和游戏化的远程医疗解决方案,用于预防肿瘤老年患者的静脉血栓栓塞
- 批准号:
10547300 - 财政年份:2023
- 资助金额:
$ 24.66万 - 项目类别:
Tele-FootX: Virtually Supervised Tele-Exercise Platform for Accelerating Plantar Wound Healing
Tele-FootX:用于加速足底伤口愈合的虚拟监督远程锻炼平台
- 批准号:
10701324 - 财政年份:2023
- 资助金额:
$ 24.66万 - 项目类别: