Electrocatalysis for the synthesis of chiral and PET imaging pharmaceuticals
电催化合成手性和 PET 成像药物
基本信息
- 批准号:10661909
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AlkenesAmidesAminesAmino AcidsCarbon DioxideCarboxylic AcidsCatalysisCathodesCell NucleusChemicalsCobaltCollaborationsComplexCouplingData ScienceDetectionDevelopmentElectricityElectrochemistryElectrodesElectrolysesElectrolytesElectronsExcisionGoalsGrantLabelLigandsMedicalMentorsMethodsModificationNitrilesOpticsOrganic ChemistryOrganic SynthesisOrganometallic ChemistryOxidantsPathway interactionsPatientsPeptidesPharmaceutical PreparationsPharmacologic SubstancePhasePhysiologic pulsePositron-Emission TomographyPreparationProcessProlineRadioactiveRadioactive ElementsRadioactivityRadioisotopesRadiolabeledRadiopharmaceuticalsReactionReaction TimeReagentReducing AgentsResearchSeriesSolidSystemTechniquesTemperatureTimeTracerTransition ElementsWorkbasebioimagingcarboxylationcatalystchemical reactionchiral moleculedesigndisorder preventiondrug discoveryfunctional groupimaging agentimprovedinterdisciplinary approachnovelnovel strategiespeptide synthasepolypeptidepreventprogramstoxic metal
项目摘要
Project Summary/Abstract
Chiral drugs and radiolabelled compounds are two general classes of highly sought molecules for the
detection, treatment, and prevention of disease. Chiral compounds are present in the majority of complex
bioactive drugs. On the other hand, radiolabeled compounds are widely used as imaging agents for positron
emission tomography (PET). Despite the many recent advancements in synthetic organic chemistry, such
as in transition-metal (TM) catalysis, the incorporation of functional groups to construct stereogenic centers
and/or install radioactive nuclei in a safe and sustainable method remains challenging. Thus, providing
opportunities to develop novel approaches in organic synthesis relevant to drug discovery. Electrosyntheses
have shown application in organic synthesis; however, it suffers from achieving product selectivity and lacks
the ability to construct stereogenic centers.
The overall goal of this project is to integrate electrochemistry and transition-metal catalysis to provide
solutions on the challenges in organic synthesis particularly in the assembly of chiral and radiolabeled drugs.
This grant builds on existing collaboration between the Minteer Lab (electrocatalysis, electroanalysis) and
the Sigman Lab (asymmetric catalysis, data science) in the development of electroactive compounds for
battery and synthesis applications. Integration of my expertise (organic chemistry, transition metal catalysis,
and organometallic chemistry) with Minteer and Sigman will bring a collective capability to accomplish the
overall goal. The central hypothesis of this application is that through the use of electrochemical energy,
non-toxic TM can be used as electrocatalysts to selectively install functional groups/atoms that are often
used as radioactive elements in PET tracers while generating a stereogenic center. Specifically, we will (Aim
1) develop cobalt electrocatalytic asymmetric reactions to convert organohalides into chiral carboxylic acids,
nitriles, and fluorinated compounds. This electrocatalytic approach will also allow us to discover new
reactions that are valuable in medical applications. Through catalyst design and electroanalysis, we will
develop (Aim 2) TM-electrocatalysts capable of activating and functionalizing inert amide bonds (most
represented polar bond in organic and biomolecules). This will provide a late-stage functionalization in
amide-containing marine products and polypeptides. Radiopharmaceuticals for PET imaging require rapid
preparation and delivery to patients due to their short-lived radioactivity (t1/2 = 20.4 and 110 min for 11C and
18F radionuclide, respectively). For the first time, we will use the strategic merger of electrochemistry and
TM-catalysis to provide a new synthetic approach to deliver chiral radiopharmaceuticals (Aim 3). The
transformations in Aims 1 and 2 were carefully chosen based on their high potential to be adapted for the
assembly of radiopharmaceuticals. Overall, this project will deliver unique, organic transformations that will
directly impact the complex process of drug discovery.
项目摘要/摘要
手性药物和放射性标记的化合物是两种一般性的高度受欢迎的分子
检测,治疗和预防疾病。大多数复合物中都存在手性化合物
生物活性药物。另一方面,放射性标记的化合物被广泛用作正电子的成像剂
排放断层扫描(PET)。尽管最近在合成有机化学方面取得了许多进步,但
与过渡金属(TM)催化一样,将官能团纳入构建立体中心
和/或以安全可持续的方法安装放射性核仍然具有挑战性。因此,提供
开发与药物发现相关的有机合成方法的新方法的机会。电气合成
已经在有机合成中显示了应用;但是,它遭受了实现产品选择性的痛苦,并且缺乏
构建立体中心的能力。
该项目的总体目标是整合电化学和过渡金属催化以提供
关于有机合成挑战的解决方案,特别是在手性和放射标记药物的组装中。
这项赠款是建立在Minteer Lab(电催化,电分析)和
Sigman Lab(不对称催化,数据科学)在开发的电活性化合物中
电池和合成应用。我的专业知识的整合(有机化学,过渡金属催化,
和有机金属化的化学)用薄荷和西格曼(Sigman)带来集体能力来完成
总体目标。该应用的中心假设是通过使用电化学,
无毒的TM可以用作电催化剂,以选择性安装通常是的功能组/原子
在产生立体中心的同时,用作宠物示踪剂的放射性元素。具体来说,我们将
1)开发钴电催化不对称反应,将有机果仁转化为手性羧酸,
硝酸盐和氟化化合物。这种电催化方法也将使我们发现新的
在医疗应用中有价值的反应。通过催化剂设计和电分析,我们将
开发(AIM 2)能够激活和功能化惰性酰胺键的TM - 电催化剂(大多数
代表有机和生物分子中的极性键)。这将在
含酰胺的海洋产品和多肽。用于PET成像的放射性药物需要快速
由于其短寿命的放射性(T1/2 = 20.4和110分钟)的准备和分娩,11C和110分钟
分别为18F放射性核素)。我们将第一次使用电化学的战略合并和
TM催化提供了一种新的合成方法来提供手性放射性药物(AIM 3)。这
AIM 1和2中的转换是根据其高潜力适应其的高潜力的仔细选择的
放射性药物的组装。总体而言,该项目将提供独特的有机转型
直接影响了复杂的药物发现过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christian Malapit其他文献
Christian Malapit的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christian Malapit', 18)}}的其他基金
Electrocatalysis for the synthesis of chiral and PET imaging pharmaceuticals
电催化合成手性和 PET 成像药物
- 批准号:
10681378 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
相似国自然基金
以胺和羧酸为原料的氮-氟化甲基酰胺的合成
- 批准号:
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:
SMYD2调控AR信号增强谷氨酰胺代谢促进前列腺癌恩杂鲁胺耐药的机制研究
- 批准号:82373355
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
含有动态共价键的阳离子化聚酰胺-胺与非离子聚醚复合构建稠油采出水处理用清水剂及其油水分离机理研究
- 批准号:52374042
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
以胺和羧酸为原料的氮—氟化甲基酰胺的合成
- 批准号:22301315
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
炔烃自由基双功能碳胺化反应构建烯酰胺化合物的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Electrically Driven C-H Functionalization with CuII/CuIII Redox Catalysts
使用 CuII/CuIII 氧化还原催化剂进行电驱动 C-H 官能化
- 批准号:
10419770 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Electrocatalysis for the synthesis of chiral and PET imaging pharmaceuticals
电催化合成手性和 PET 成像药物
- 批准号:
10681378 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Electrically Driven C-H Functionalization with CuII/CuIII Redox Catalysts
使用 CuII/CuIII 氧化还原催化剂进行电驱动 C-H 官能化
- 批准号:
10629279 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Nickel-Catalyzed Alkyne Hydroamination for Efficient Amine Synthesis
镍催化炔氢胺化用于高效胺合成
- 批准号:
10292302 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
New Synthetic Methods Enabled by Excited-State Redox Chemistry
激发态氧化还原化学实现的新合成方法
- 批准号:
10326380 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别: