Cas9 RNP delivery to immune cells in vivo via molecular targeting
Cas9 RNP 通过分子靶向递送至体内免疫细胞
基本信息
- 批准号:10664098
- 负责人:
- 金额:$ 125.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-23 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimal ModelAnimal TestingAntibodiesAutologous TransplantationBindingCRISPR/Cas technologyCell membraneCellsCellular MembraneClinicalDevelopmentDiseaseEndocytosisEndosomesEngineeringEnsureEnzymesFruitGeneticHomingHumanImmuneImmunoglobulin FragmentsLigand BindingLiverMacacaMacaca mulattaMediatingMethodsMindMolecular TargetMusOrganPeptidesPhasePlayPreparationPrimatesProceduresProductionPropertyProteinsRNAResourcesRiskRodentSafetySeriesSpecificitySurfaceSystemT-LymphocyteTechnologyTestingTherapeuticTherapeutic UsesValidationViral VectorVirusWorkaptamerbasecell typeclinical developmentcross reactivitydesignexperimental studygenetic manipulationgenome editinghigh throughput screeninghumanized mouseimmunogenicimprovedin vitro testingin vivointerestintravenous administrationlipid nanoparticlenew technologynonhuman primatenovelpre-clinicalpreventprotein complexreceptor bindingrecruitscale upscreeningstemtargeted agenttargeted deliverytherapeutic genome editinguptake
项目摘要
PROJECT SUMMARY / ABSTRACT
CRISPR-Cas9 has demonstrated incredible potential to provide clinical benefit, but the challenge of delivery
currently hinders therapeutic use of genome editing in vivo. Use of viral vectors and lipid nanoparticles has
established the viability of in vivo genome editing, but these technologies have substantial drawbacks. Viral
vectors are immunogenic, difficult to manufacture, and have been associated with increased risks of off-target
editing. Lipid nanoparticles are unsuitable for systemic administration if targeting organs other than the liver. Ex
vivo therapies relying on autologous transplantation have shown the immense value in genetic manipulation of
immune cells, but the procedures remain risky, resource-intensive, and prohibitively expensive.
An ideal method to deliver therapeutic genome editing enzymes would be non-toxic, compatible with
intravenous administration, amenable to large-scale manufacture, and targeted to the cell type in need of
genetic correction. With all this in mind, we propose delivery of CRISPR-Cas9 in the form of an RNA-protein
(RNP) complex. Cas9 RNP has been shown to be safe and effective in vivo following local administration, and
we have established a strategy to enable cell type-specific delivery of Cas9 RNP tethered to a molecular
targeting agent (MTA) such as a receptor-binding ligand, antibody, or aptamer.
Our proposal aims to use MTA-tethered Cas9 RNP for targeted editing of T cells in vivo. We will rely on
established and novel MTAs to promote efficient and specific uptake of Cas9 RNP into T cells. Well-
characterized antibody MTAs will direct specific editing in human, mouse, and primate T cells. Novel aptamer
MTAs will be screened with a focus on cross-species reactivity to streamline the transition from pre-clinical to
clinical development. Because the Cas9 RNP has no inherent ability to cross cellular membranes, it will be
augmented with the ability to escape the endosome to avoid lysosomal degradation following MTA-induced
endocytosis. We have established a novel modular approach to functionalize Cas9 for endosomal escape,
facilitating re-optimization for specific cell types as needed.
In the UG3 phase, we will complete the following three aims: (1) Enable in vivo-compatible genome editing of
immune cells using targeted Cas9 RNP; (2) Identify robust molecular targeting agents for T cell-specific
editing; (3) Use targeted Cas9 RNP for in vivo genome editing of T cells. Following independent validation of
editing in mice, the UH3 phase will perform the following: (1) Scale up production of targeted Cas9 RNP for
large animal testing; (2) Validate targeted Cas9 RNP for in vivo genome editing in non-human primates.
The intersection of MTA-based cell targeting and the efficient endosomal escape of Cas9 RNP will generate a
versatile genome editing platform suitable for intravenous administration. Successful completion of the
proposed work will result in an engineered Cas9 RNP system that is safe, effective in vivo, readily
manufactured, and “plug & play” regarding its molecular targeting to multiple cell types of interest.
项目摘要 /摘要
CRISPR-CAS9表现出了提供临床益处的难以置信的潜力,但是交付的挑战
目前,在体内阻碍了基因组编辑的治疗用途。使用病毒载体和脂质纳米颗粒具有
建立了体内基因组编辑的生存能力,但是这些技术具有很大的缺点。病毒性的
向量具有免疫原性,难以生产,并且与脱靶的风险增加有关
编辑。如果针对肝脏以外的其他器官,则脂质纳米颗粒不适合全身给药。前任
依靠自体移植的体内疗法表明,
免疫细胞,但这些程序仍然存在风险,资源密集并且非常昂贵。
传递热基因组编辑酶的理想方法是无毒的,与
静脉内给药,适合大规模制造,针对需要的细胞类型
考虑到所有这些,我们建议以RNA-蛋白质的形式提供CRISPR-CAS9
(RNP)复合物。 CAS9 RNP在当地管理后的体内被证明是安全有效的,并且
我们已经建立了一种策略,以启用特定于细胞类型的cas9 rnp的递送到分子
靶向剂(MTA),例如接收器结合配体,抗体或apatamer。
我们的建议旨在使用MTA系的CAS9 RNP进行体内T细胞的靶向编辑。我们将依靠
建立且新颖的MTA,以促进CAS9 RNP对T细胞的有效且特定的摄取。出色地-
表征的抗体MTA将指导人,小鼠和灵长类动物T细胞中的特定编辑。新颖的apatmer
MTA将筛选,重点是跨物种的反应性,以简化从临床前的过渡到
临床发展。因为CAS9 RNP没有跨细胞膜的遗传性,所以它将是
增强了逃脱内体的能力,以避免MTA引起的溶酶体降解
内吞作用。我们已经建立了一种新型的模块化方法,可以使Cas9官能化以进行内体逃生,
根据需要促进对特定细胞类型的重新选择。
在UG3阶段,我们将完成以下三个目标:(1)启用体内兼容的基因组编辑
使用靶向CAS9 RNP的免疫细胞; (2)确定T细胞特异性的强大分子靶向剂
编辑; (3)使用靶向CAS9 RNP进行T细胞的体内基因组编辑。在独立验证之后
在小鼠中进行编辑,UH3阶段将执行以下操作:(1)扩大目标CAS9 RNP的生产
大动物测试; (2)在非人类隐私中验证靶向的CAS9 RNP进行体内基因组编辑。
基于MTA的细胞靶向与CAS9 RNP的有效内体逃逸的交集将产生
多功能基因组编辑平台适合静脉内给药。成功完成
拟议的工作将导致设计的CAS9 RNP系统,该系统很容易,在体内有效,很容易
关于其分子靶向多种细胞类型感兴趣的分子靶向,制造的和“插件”。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JENNIFER A DOUDNA其他文献
JENNIFER A DOUDNA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JENNIFER A DOUDNA', 18)}}的其他基金
Correction of Neurological Disease via Allele Specific Excision of Pathogenic Repeats
通过等位基因特异性切除致病重复序列来纠正神经系统疾病
- 批准号:
10668665 - 财政年份:2023
- 资助金额:
$ 125.74万 - 项目类别:
Identifying and inhibiting the SARS-CoV-2 packaging mechanism
识别和抑制 SARS-CoV-2 包装机制
- 批准号:
10204705 - 财政年份:2021
- 资助金额:
$ 125.74万 - 项目类别:
Cas9 RNP delivery to immune cells in vivo via molecular targeting
Cas9 RNP 通过分子靶向递送至体内免疫细胞
- 批准号:
10214471 - 财政年份:2019
- 资助金额:
$ 125.74万 - 项目类别:
Cas9 RNP delivery to immune cells in vivo via molecular targeting
Cas9 RNP 通过分子靶向递送至体内免疫细胞
- 批准号:
9810686 - 财政年份:2019
- 资助金额:
$ 125.74万 - 项目类别:
HARC Center: HIV Accessory and Regulatory Complexes
HARC 中心:HIV 辅助和调节复合体
- 批准号:
8548361 - 财政年份:2013
- 资助金额:
$ 125.74万 - 项目类别:
Minstrel HTUV Gallery 700 Automated Crystal Growth and Imaging System
Minstrel HTUV Gallery 700 自动晶体生长和成像系统
- 批准号:
8447984 - 财政年份:2013
- 资助金额:
$ 125.74万 - 项目类别:
HCV IRES Control of Human Translational Initiation
HCV IRES 控制人类翻译起始
- 批准号:
8337063 - 财政年份:2011
- 资助金额:
$ 125.74万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
利用碱基编辑器治疗肥厚型心肌病的动物模型研究
- 批准号:82300396
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
利用小型猪模型评价动脉粥样硬化易感基因的作用
- 批准号:32370568
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
丁苯酞通过调节细胞异常自噬和凋亡来延缓脊髓性肌萎缩症动物模型脊髓运动神经元的丢失
- 批准号:82360332
- 批准年份:2023
- 资助金额:31.00 万元
- 项目类别:地区科学基金项目
APOBEC3A驱动膀胱癌发生发展的动物模型及其机制研究
- 批准号:82303057
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Effects of tACS on alcohol-induced cognitive and neurochemical deficits
tACS 对酒精引起的认知和神经化学缺陷的影响
- 批准号:
10825849 - 财政年份:2024
- 资助金额:
$ 125.74万 - 项目类别:
Impact of tissue resident memory T cells on the neuro-immune pathophysiology of anterior eye disease
组织驻留记忆 T 细胞对前眼疾病神经免疫病理生理学的影响
- 批准号:
10556857 - 财政年份:2023
- 资助金额:
$ 125.74万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 125.74万 - 项目类别:
Wearable, Wireless Deep-tissue Sensing Patch for Continuous Monitoring of Recovery from Microsurgical Tissue Transfer
可穿戴式无线深层组织传感贴片,用于连续监测显微外科组织转移的恢复情况
- 批准号:
10637093 - 财政年份:2023
- 资助金额:
$ 125.74万 - 项目类别: