Development of bio-integrated devices to enhance transplant survival for subcutaneous encapsulated cell therapies
开发生物集成设备以提高皮下封装细胞疗法的移植存活率
基本信息
- 批准号:10634688
- 负责人:
- 金额:$ 8.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAcuteAddressAdverse eventAgingAlginatesAnimalsAttentionAutoimmune DiseasesBiological MarkersBiological SciencesBiosensorCarbonCarrier ProteinsCell DeathCell DensityCell LineCell SeparationCell SurvivalCell TherapyCell TransplantationCellsCellular biologyCharacteristicsChemicalsChronic DiseaseCollectionCommunicationComplexCorrosionDependenceDevelopmentDevice DesignsDevicesDiabetic mouseDiffusionDiseaseDisease modelDoseDrug Delivery SystemsElectrical EngineeringElectrochemistryElectrodesElectronicsEncapsulatedEngineeringEnsureEquipment MalfunctionExclusionFailureFeedbackFellowshipFibrosisFilmForeign BodiesFoundationsGenerationsGeometryGoalsHemophilia AHousingHydrogelsHypoxiaImmuneImmune systemImmunocompetentImplantInsulin-Dependent Diabetes MellitusLengthLocationMalignant NeoplasmsMaterials TestingMeasurementMembraneMentorsMetalsMicrofabricationMicrofluidicsModelingModificationMonitorMusNeurodegenerative DisordersNutrientOperative Surgical ProceduresOpticsOxygenOxygen ConsumptionParkinson DiseasePatientsPerformancePermeabilityPharmaceutical PreparationsPhysicsPhysiologicalPolymer ChemistryPolymersPorosityPropertyProtein SecretionProteinsRattusRegimenRetrievalRiskSchemeSiteSkinStreptozocinSubcategorySurfaceSystemTechnologyTestingTherapeuticThinnessTimeTissuesTransplantationTreatment EfficacyVascularizationWireless ChargingWorkawakebioelectronicscapsulecell immortalizationcell typeclinical riskclinical translationdata acquisitiondata exchangedensitydesigndigitalevaporationexperienceflexibilityimplantable deviceimplantationimprovedin vitro Modelin vitro testingin vivoin vivo evaluationinterestisletmaterials sciencemicrosystemsminimally invasivemonitoring deviceoperationoxygen transportphysical sciencepreventprotein transportprototyperesponsesensorskillssubcutaneoustechnology platformtherapeutic proteinwireless
项目摘要
Encapsulated cell therapies (ECT) are attractive therapeutic platforms that involve the housing
of collections of transplanted cells capable of secreting therapeutic proteins within polymeric
frames. These technologies represent the potential to eliminate patient dependence on complex
drug-dosing regimens while maintaining circulating drug levels within healthy, nontoxic
therapeutic ranges for diseases ranging from autoimmune disorders to cancer. Transplanted
cells are isolated from host immune systems via encapsulation materials and semipermeable,
porous polymeric membranes (immunisolation membranes) via size exclusion effects. Despite
attracting significant interest, ECT devices have not found widespread clinical translation owing
to transplant failure, with low oxygen tension within the transplanted cell microenvironment and
fibrosis representing major causes. Size considerations related to cellular packing density
represent a further translational challenge. This challenge is particularly acute in subcutaneous
(SC) implants owing to the region’s low vascularization and high rates of fibrotic capsule
formation. Despite these hurdles, SC implants have attracted considerable attention owing to
the minimally invasive surgery requirements and potential for easy device monitoring and
retrieval. In this proposal, I will use approaches in microfabrication and bioelectronic device
design to improve oxygen tension within the transplanted cell microenvironment in SC-ECT
devices. In Aim 1 I will develop advanced multiphysics models to predict and address oxygen
need in implanted SC devices. In Aim 2, I will use surface chemical modifications to suppress
fibrosis and ensure long-term transplant survival in oxygen-generating bioelectronic ECT
implants. In Aim 3, I will pursue system level integration using design principles in flexible
bioelectronics, biosensor development and resonant inductive wireless power transfer
approaches. If successful, the resulting platform technology will support SC transplanted cell
survival long term, with potential applications across cell types and disease models. The work is
highly interdisciplinary, incorporating materials science, cell therapies, drug delivery and
electronic/electrical engineering. If successful, the work will create a platform technology
capable of addressing a wide range of unmet therapeutic needs in minimally invasive
implantation sites to de-risk clinical translation. My background is primarily in the physical
sciences: through this Fellowship, I will work closely with my co-mentors, Profs. Daniel
Anderson and Robert Langer at MIT to develop skills that will allow me to work at the interface
between engineering and the life sciences, with a focus on clinical translation.
封装细胞疗法(ECT)是有吸引力的治疗平台,涉及外壳
能够在聚合物内分泌治疗蛋白的移植细胞的集合
这些技术代表了消除患者对复杂框架的依赖的潜力。
药物剂量方案,同时将循环药物水平维持在健康、无毒的范围内
治疗范围从自身免疫性疾病到移植癌症。
细胞通过封装材料和半透性与宿主免疫系统分离,
尽管存在尺寸排阻效应,但多孔聚合物膜(免疫隔离膜)。
ECT 设备引起了极大的兴趣,但尚未得到广泛的临床转化
移植失败,移植细胞微环境中氧张力低,
纤维化代表与细胞堆积密度相关的尺寸考虑因素。
这一挑战在皮下尤其严重
(SC) 植入物归因于该区域的低血管化和高纤维化囊发生率
尽管存在这些障碍,SC 植入物还是引起了相当大的关注。
微创手术的要求和易于设备监控的潜力
在本提案中,我将使用微加工和生物电子设备中的方法。
旨在改善 SC-ECT 中移植细胞微环境内氧张力的设计
在目标 1 中,我将开发先进的多物理场模型来预测和解决氧气问题。
在目标 2 中,我将使用表面化学修饰来抑制植入 SC 设备中的需要。
纤维化并确保产氧生物电子 ECT 中的长期移植存活
在目标 3 中,我将利用灵活的设计原则追求系统级集成。
生物电子学、生物传感器开发和谐振感应无线电力传输
如果成功,由此产生的平台技术将支持 SC 移植细胞。
长期存活,具有跨细胞类型和疾病模型的潜在应用。
高度跨学科,融合了材料科学、细胞疗法、药物输送和
如果成功,这项工作将创建一个平台技术。
能够解决微创领域广泛的未满足的治疗需求
降低临床翻译风险的植入部位 我的背景主要是物理方面的。
科学:通过这个奖学金,我将与我的共同导师 Daniel 教授密切合作。
麻省理工学院的安德森和罗伯特·兰格培养我在界面上工作的技能
工程和生命科学之间的领域,重点是临床转化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Siddharth Krishnan其他文献
Siddharth Krishnan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Siddharth Krishnan', 18)}}的其他基金
Development of bio-integrated devices to enhance transplant survival for subcutaneous encapsulated cell therapies
开发生物集成设备以提高皮下封装细胞疗法的移植存活率
- 批准号:
10525644 - 财政年份:2022
- 资助金额:
$ 8.77万 - 项目类别:
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
- 批准号:82300764
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACSS2介导的乙酰辅酶a合成在巨噬细胞组蛋白乙酰化及急性肺损伤发病中的作用机制研究
- 批准号:82370084
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
- 批准号:82370175
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:
10678789 - 财政年份:2023
- 资助金额:
$ 8.77万 - 项目类别:
Feasibility of Using PET Imaging for Detection of Treatment-Induced Changes in Chronic Neuroinflammation Following TBI
使用 PET 成像检测 TBI 后治疗引起的慢性神经炎症变化的可行性
- 批准号:
10703823 - 财政年份:2023
- 资助金额:
$ 8.77万 - 项目类别:
RECIPROCAL FEEDBACK MECHANISMS OF GLIOBLASTOMA AND NEURONAL NETWORK HYPEREXCITABILITY
胶质母细胞瘤与神经网络过度兴奋的交互反馈机制
- 批准号:
10629813 - 财政年份:2023
- 资助金额:
$ 8.77万 - 项目类别:
Stabilizing the tripartite synaptic complex following TBI
TBI 后稳定三方突触复合体
- 批准号:
10844877 - 财政年份:2023
- 资助金额:
$ 8.77万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 8.77万 - 项目类别: