Okazaki fragment maturation: mutagenesis and cell survival
冈崎片段成熟:诱变和细胞存活
基本信息
- 批准号:10636417
- 负责人:
- 金额:$ 54.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:3&apos-nucleaseApplications GrantsCHEK1 geneCHEK2 geneCancer ModelCell DeathCell MaturationCell ProliferationCell Senescence InductionCell SurvivalCellsDNA DamageDNA Sequence AlterationDNA biosynthesisDNA damage checkpointDataDrug resistanceEnzymesEpidermal Growth Factor ReceptorEpidermal Growth Factor Receptor Tyrosine Kinase InhibitorEvolutionGenetic ScreeningGenomic SegmentGoalsGrowthHumanImpairmentIn VitroMalignant Epithelial CellMammalian CellMeasuresModelingMolecularMusMutagenesisMutateMutationNon-Small-Cell Lung CarcinomaOkazaki fragmentsPathway interactionsPhosphorylationProbabilityProcessRTH-1 NucleaseRadiation therapyResistanceRoleSignal InductionSignal TransductionSiteStressStructureSupporting CellTemperatureTestingYeastsacquired drug resistanceanti-cancercancer cellcancer therapychemotherapygenome-widehelicasein vitro activitylung cancer cellmouse modelmutantnucleasepreventrecruitreplication stressresponsetherapy developmenttherapy resistantyeast genetics
项目摘要
ABSTRACT
The long-term goal of this project is to define the molecular mechanisms of an error-prone, stress-induced
Okazaki fragment maturation (OFM) pathway by which cancer cells counteract replication stress and survive.
Replication stress is a hallmark of cancer cells and has been considered the Achilles' heel for cancer treatment
such as radio- and chemotherapy. Under elevated temperature stress, yeast cells mutant for flap endonuclease 1
(FEN1 in humans or RAD27 in yeast) activate DNA damage response pathways to block cell proliferation and
induce cell senescence and death; however, a subpopulation of cells can overcome these barriers and escape
otherwise lethal conditions. Genome-wide mutations and rearrangements have been suggested as a major
molecular mechanism that drives this evolution. However, how such spontaneous mutations are acquired in cells
under replication stress is a long-standing question. Recently, we identified an error-prone, 3' flap OFM pathway
that is activated in response to stress to support cell survival and fuel cellular evolution; its induction leads to
genome-wide mutagenesis and suppression of restrictive growth temperature-induced lethality, a process
mimicking that of cancer cells acquiring drug resistance. This led us to a model in which OFM can go in two
ways, which may dictate the fate of cells, including human cancer cells: a 5' flap-based, error-free process or an
alternative 3' flap-based, stress-induced, and error-prone process. However, key components that drive such
flap dynamics remain undefined. The objectives of the proposed project are to define the key enzymes that
catalyze 3' flap formation and cleavage in mammalian cells and to provide proof of concept that suppressing
alternative 3' flap OFM can prevent drug resistance in human cancer cells. Further preliminary data gathered to
support this grant application show that 3' flap OFM is conserved in both yeast and human cells. We observed
that anti-cancer EGFR tyrosine kinase inhibitors activated the ATM/CHK2 DNA damage checkpoints in human
lung cancer cells. Using yeast genetic screening, we identified Pif1 (PIF1 in humans) and Sgs1 (BLM and WRN
in humans) as helicases for 5' to 3' flap transformation and Rad1 (XPF in humans) and Mus81 (MUS81 in
humans) as 3' nucleases for 3' flap cleavage, in addition to the 3' nuclease activity of Pol . Therefore, our central
hypothesis is that unprocessed 5' flaps in mammalian cells activate ATM/ATR and CHK1/2 signaling to recruit
and stimulate PIF1, BLM, and WRN and/or other helicases for transforming 5' flaps into 3' flaps for nucleolytic
degradation by 3' nucleases including Pol , XPF, and/or MUS81, and that blocking the 3' flap OFM pathway
will suppress DNA mutations and thus prevent drug resistance. To test this, we will: i) determine the roles of
helicases PIF1, BLM, and WRN in 3' flap formation and induction of alternative OFM; ii) define the functional
distribution of 3' nucleases Pol , XPF, and MUS81 in processing 3' flaps with or without secondary structures
during 3' flap OFM; and iii) define the extent to which stress-activated ATM/CHK2 signaling induces 3' flap OFM
and mutations to support cancer cell survival and promote drug resistance.
抽象的
该项目的长期目标是定义容易出错的,应力诱导的分子机制
Okazaki碎片成熟(OFM)途径,癌细胞抵消复制应力并存活。
复制应力是癌细胞的标志,被认为是致命癌治疗的阿喀琉斯脚跟
例如放射和化学疗法。在升高的温度应力下,酵母细胞突变的flap核酸内切酶1
(人类中的Fen1或酵母中的Rad27)激活DNA损伤响应途径,以阻止细胞增殖和
诱导细胞感应和死亡;但是,细胞的亚群可以克服这些障碍并逃脱
否则致命的条件。全基因组突变和重排被认为是主要的
驱动这种进化的分子机制。但是,如何在细胞中获取这种赞助突变
在复制压力下是一个长期的问题。最近,我们确定了一个容易出错的3'襟翼。
这是为了响应压力来支持细胞存活和燃料细胞进化而激活的;它的归纳导致
全基因组诱变和抑制限制性生长温度引起的致死性,这是一个过程
模仿癌细胞加速耐药性。这导致我们达到了一个模型,其中Ofm可以分为两个
可能决定细胞命运的方法,包括人类癌细胞:基于5'瓣的,无错误的过程或
替代3'襟翼基于应力诱导的和容易出错的过程。但是,驱动这样的关键组件
皮瓣动态仍然不确定。拟议项目的目标是定义关键酶
催化哺乳动物细胞中的3'皮瓣形成和裂解,并提供抑制概念证明
替代3'襟翼可以防止人类癌细胞中的耐药性。进一步收集到
支持此赠款应用显示,在酵母和人类细胞中均保存3'襟翼。我们观察到
抗癌EGFR酪氨酸激酶抑制剂激活了人类的ATM/CHK2 DNA损伤检查点
肺癌细胞。使用酵母基因筛选,我们鉴定了PIF1(人类中的PIF1)和SGS1(BLM和WRN
在人类中)作为5'至3'瓣转换的解旋酶,Rad1(人类XPF)和MUS81(MUS81中的MUS81
除3'的核酸酶活性外,人类)作为3'瓣裂解的3'核。因此,我们的中心
假设是哺乳动物细胞中未加工的5'襟翼激活ATM/ATR和CHK1/2信号以募集
并刺激PIF1,BLM和WRN和/或其他解旋酶,用于将5'襟翼转化为3'襟翼以进行核酸化
3'核的降解,包括pol,XPF和/或MUS81,并阻止了3'襟翼的途径
将抑制DNA突变,从而防止耐药性。要测试这一点,我们将:i)确定
在3'皮瓣形成中的旋转酶PIF1,BLM和WRN以及替代ofm的诱导; ii)定义功能
在处理有或没有次级结构的3'襟翼中,在处理3'的襟翼中的3'核电pol,XPF和MUS81的分布
在3'襟翼中; iii)定义应力激活的ATM/CHK2信号传导的程度3'襟翼
和支持癌细胞存活并促进耐药性的突变。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BINGHUI SHEN其他文献
BINGHUI SHEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BINGHUI SHEN', 18)}}的其他基金
DNA repair gene mutations and prostate cancer
DNA修复基因突变与前列腺癌
- 批准号:
10307594 - 财政年份:2019
- 资助金额:
$ 54.78万 - 项目类别:
DNA repair gene mutations and prostate cancer
DNA修复基因突变与前列腺癌
- 批准号:
10064136 - 财政年份:2019
- 资助金额:
$ 54.78万 - 项目类别:
DNA repair gene mutations and prostate cancer
DNA修复基因突变与前列腺癌
- 批准号:
10529297 - 财政年份:2019
- 资助金额:
$ 54.78万 - 项目类别:
Lung and other cancer etiological model of BER gene polymorphisms
BER基因多态性的肺癌和其他癌症病因模型
- 批准号:
8103282 - 财政年份:2010
- 资助金额:
$ 54.78万 - 项目类别:
Lung and other cancer etiological model of BER gene polymorphisms
BER基因多态性的肺癌和其他癌症病因模型
- 批准号:
7990964 - 财政年份:2010
- 资助金额:
$ 54.78万 - 项目类别:
Role of Nucleases in RNA Primer Removal and Mutagenesis
核酸酶在 RNA 引物去除和诱变中的作用
- 批准号:
7809910 - 财政年份:2009
- 资助金额:
$ 54.78万 - 项目类别:
MECHANISTIC ANALYSIS OF SITE DIRECTED MUTANT NUCLEASE ENZYMES
定点突变核酸酶的机理分析
- 批准号:
6470648 - 财政年份:2001
- 资助金额:
$ 54.78万 - 项目类别:
相似国自然基金
核糖核酸酶DIS3调控小鼠精子发生与雄性生育力的分子机制研究
- 批准号:32370904
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于核酸酶介导的晶体管传感界面及单核苷酸突变快检应用研究
- 批准号:22304031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
细菌新型核酸酶-蛋白酶耦联的CRISPR-Cas系统的免疫机制研究
- 批准号:32300025
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
基于可编程核酸酶Argonaute的DNA高效合成及组装技术研究
- 批准号:32301221
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于点击化学的核糖核酸酶靶向嵌合体优化研究
- 批准号:82373784
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
相似海外基金
Drug-Induced Destabilization of Bcl-2 mRNA
药物诱导的 Bcl-2 mRNA 不稳定
- 批准号:
7911535 - 财政年份:2009
- 资助金额:
$ 54.78万 - 项目类别:
Development of RIP-Chip methods and tiled arrays to identify functional elements
开发 RIP-Chip 方法和平铺阵列来识别功能元素
- 批准号:
7347325 - 财政年份:2008
- 资助金额:
$ 54.78万 - 项目类别:
Development of RIP-Chip methods and tiled arrays to identify functional elements
开发 RIP-Chip 方法和平铺阵列来识别功能元素
- 批准号:
7618399 - 财政年份:2008
- 资助金额:
$ 54.78万 - 项目类别:
Development of RIP-Chip methods and tiled arrays to identify functional elements
开发 RIP-Chip 方法和平铺阵列来识别功能元素
- 批准号:
7825468 - 财政年份:2008
- 资助金额:
$ 54.78万 - 项目类别:
Drug-Induced Destabilization of Bcl-2 mRNA
药物诱导的 Bcl-2 mRNA 不稳定
- 批准号:
7208037 - 财政年份:2005
- 资助金额:
$ 54.78万 - 项目类别: