Okazaki fragment maturation: mutagenesis and cell survival
冈崎片段成熟:诱变和细胞存活
基本信息
- 批准号:10636417
- 负责人:
- 金额:$ 54.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:3&apos-nucleaseApplications GrantsCHEK1 geneCHEK2 geneCancer ModelCell DeathCell MaturationCell ProliferationCell Senescence InductionCell SurvivalCellsDNA DamageDNA Sequence AlterationDNA biosynthesisDNA damage checkpointDataDrug resistanceEnzymesEpidermal Growth Factor ReceptorEpidermal Growth Factor Receptor Tyrosine Kinase InhibitorEvolutionGenetic ScreeningGenomic SegmentGoalsGrowthHumanImpairmentIn VitroMalignant Epithelial CellMammalian CellMeasuresModelingMolecularMusMutagenesisMutateMutationNon-Small-Cell Lung CarcinomaOkazaki fragmentsPathway interactionsPhosphorylationProbabilityProcessRTH-1 NucleaseRadiation therapyResistanceRoleSignal InductionSignal TransductionSiteStressStructureSupporting CellTemperatureTestingYeastsacquired drug resistanceanti-cancercancer cellcancer therapychemotherapygenome-widehelicasein vitro activitylung cancer cellmouse modelmutantnucleasepreventrecruitreplication stressresponsetherapy developmenttherapy resistantyeast genetics
项目摘要
ABSTRACT
The long-term goal of this project is to define the molecular mechanisms of an error-prone, stress-induced
Okazaki fragment maturation (OFM) pathway by which cancer cells counteract replication stress and survive.
Replication stress is a hallmark of cancer cells and has been considered the Achilles' heel for cancer treatment
such as radio- and chemotherapy. Under elevated temperature stress, yeast cells mutant for flap endonuclease 1
(FEN1 in humans or RAD27 in yeast) activate DNA damage response pathways to block cell proliferation and
induce cell senescence and death; however, a subpopulation of cells can overcome these barriers and escape
otherwise lethal conditions. Genome-wide mutations and rearrangements have been suggested as a major
molecular mechanism that drives this evolution. However, how such spontaneous mutations are acquired in cells
under replication stress is a long-standing question. Recently, we identified an error-prone, 3' flap OFM pathway
that is activated in response to stress to support cell survival and fuel cellular evolution; its induction leads to
genome-wide mutagenesis and suppression of restrictive growth temperature-induced lethality, a process
mimicking that of cancer cells acquiring drug resistance. This led us to a model in which OFM can go in two
ways, which may dictate the fate of cells, including human cancer cells: a 5' flap-based, error-free process or an
alternative 3' flap-based, stress-induced, and error-prone process. However, key components that drive such
flap dynamics remain undefined. The objectives of the proposed project are to define the key enzymes that
catalyze 3' flap formation and cleavage in mammalian cells and to provide proof of concept that suppressing
alternative 3' flap OFM can prevent drug resistance in human cancer cells. Further preliminary data gathered to
support this grant application show that 3' flap OFM is conserved in both yeast and human cells. We observed
that anti-cancer EGFR tyrosine kinase inhibitors activated the ATM/CHK2 DNA damage checkpoints in human
lung cancer cells. Using yeast genetic screening, we identified Pif1 (PIF1 in humans) and Sgs1 (BLM and WRN
in humans) as helicases for 5' to 3' flap transformation and Rad1 (XPF in humans) and Mus81 (MUS81 in
humans) as 3' nucleases for 3' flap cleavage, in addition to the 3' nuclease activity of Pol . Therefore, our central
hypothesis is that unprocessed 5' flaps in mammalian cells activate ATM/ATR and CHK1/2 signaling to recruit
and stimulate PIF1, BLM, and WRN and/or other helicases for transforming 5' flaps into 3' flaps for nucleolytic
degradation by 3' nucleases including Pol , XPF, and/or MUS81, and that blocking the 3' flap OFM pathway
will suppress DNA mutations and thus prevent drug resistance. To test this, we will: i) determine the roles of
helicases PIF1, BLM, and WRN in 3' flap formation and induction of alternative OFM; ii) define the functional
distribution of 3' nucleases Pol , XPF, and MUS81 in processing 3' flaps with or without secondary structures
during 3' flap OFM; and iii) define the extent to which stress-activated ATM/CHK2 signaling induces 3' flap OFM
and mutations to support cancer cell survival and promote drug resistance.
抽象的
该项目的长期目标是定义容易出错、压力诱导的分子机制
冈崎片段成熟(OFM)途径,癌细胞通过该途径抵消复制压力并存活。
复制压力是癌细胞的标志,被认为是癌症治疗的致命弱点
例如,在高温应激下,酵母细胞会出现瓣状核酸内切酶 1 突变。
(人类中的 FEN1 或酵母中的 RAD27)激活 DNA 损伤反应途径以阻止细胞增殖和
诱导细胞衰老和死亡;然而,细胞亚群可以克服这些障碍并逃脱
其他致命的情况已被认为是主要的基因组突变和重排。
然而,这种自发突变是如何在细胞中获得的。
最近,我们发现了一个容易出错的 3' 瓣 OFM 通路。
它因应激而被激活,以支持细胞生存并促进细胞进化;
全基因组诱变和限制性生长温度诱导致死的抑制,一个过程
模仿癌细胞获得耐药性的过程,这使我们建立了一个模型,其中 OFM 可以分为两部分。
方式,这可能决定细胞的命运,包括人类癌细胞:基于 5' 瓣的无差错过程或
替代的基于 3' 瓣的、应力引起的且容易出错的过程然而,驱动这种过程的关键组件。
皮瓣动力学仍未定义。拟议项目的目标是定义关键酶。
催化哺乳动物细胞中 3' 瓣的形成和裂解,并提供抑制
替代 3' 瓣 OFM 可以预防人类癌细胞的耐药性。
支持这项资助申请表明我们观察到 3' 瓣 OFM 在酵母和人类细胞中都是保守的。
抗癌 EGFR 酪氨酸激酶抑制剂激活人类 ATM/CHK2 DNA 损伤检查点
通过酵母基因筛选,我们鉴定出了 Pif1(人类中的 PIF1)和 Sgs1(BLM 和 WRN)。
人类中)作为 5' 至 3' 瓣转化的解旋酶以及 Rad1(人类中的 XPF)和 Mus81(人类中的 MUS81)
人类)作为 3' 瓣切割的 3' 核酸酶,除了 Pol 的 3' 核酸酶活性之外,因此,我们的中心。
假设哺乳动物细胞中未经加工的 5' 瓣激活 ATM/ATR 和 CHK1/2 信号传导以招募
并刺激 PIF1、BLM 和 WRN 和/或其他解旋酶,将 5' 皮瓣转化为 3' 皮瓣以进行溶核
被 3' 核酸酶(包括 Pol 、XPF 和/或 MUS81)降解,并阻断 3' 瓣 OFM 通路
会抑制 DNA 突变,从而防止耐药性。为了测试这一点,我们将: i) 确定 的作用。
解旋酶 PIF1、BLM 和 WRN 在 3' 瓣形成和替代 OFM 诱导中的作用 ii) 定义功能;
3' 核酸酶 Pol 、XPF 和 MUS81 在处理具有或不具有二级结构的 3' 瓣中的分布
在 3' 瓣 OFM 期间;以及 iii) 定义应激激活的 ATM/CHK2 信号传导诱导 3' 瓣 OFM 的程度
以及支持癌细胞存活和促进耐药性的突变。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BINGHUI SHEN其他文献
BINGHUI SHEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BINGHUI SHEN', 18)}}的其他基金
DNA repair gene mutations and prostate cancer
DNA修复基因突变与前列腺癌
- 批准号:
10307594 - 财政年份:2019
- 资助金额:
$ 54.78万 - 项目类别:
DNA repair gene mutations and prostate cancer
DNA修复基因突变与前列腺癌
- 批准号:
10064136 - 财政年份:2019
- 资助金额:
$ 54.78万 - 项目类别:
DNA repair gene mutations and prostate cancer
DNA修复基因突变与前列腺癌
- 批准号:
10529297 - 财政年份:2019
- 资助金额:
$ 54.78万 - 项目类别:
Lung and other cancer etiological model of BER gene polymorphisms
BER基因多态性的肺癌和其他癌症病因模型
- 批准号:
8103282 - 财政年份:2010
- 资助金额:
$ 54.78万 - 项目类别:
Lung and other cancer etiological model of BER gene polymorphisms
BER基因多态性的肺癌和其他癌症病因模型
- 批准号:
7990964 - 财政年份:2010
- 资助金额:
$ 54.78万 - 项目类别:
Role of Nucleases in RNA Primer Removal and Mutagenesis
核酸酶在 RNA 引物去除和诱变中的作用
- 批准号:
7809910 - 财政年份:2009
- 资助金额:
$ 54.78万 - 项目类别:
MECHANISTIC ANALYSIS OF SITE DIRECTED MUTANT NUCLEASE ENZYMES
定点突变核酸酶的机理分析
- 批准号:
6470648 - 财政年份:2001
- 资助金额:
$ 54.78万 - 项目类别:
相似国自然基金
核糖核酸酶抑制因子在炎症性肠病中的调控机制及意义
- 批准号:82370550
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
核糖核酸酶DIS3调控小鼠精子发生与雄性生育力的分子机制研究
- 批准号:32370904
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
细菌新型核酸酶-蛋白酶耦联的CRISPR-Cas系统的免疫机制研究
- 批准号:32300025
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
基于核酸酶介导的晶体管传感界面及单核苷酸突变快检应用研究
- 批准号:22304031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
小型CRISPR-Cas核酸酶的分子机理研究与新型基因编辑工具的研发
- 批准号:32330055
- 批准年份:2023
- 资助金额:228 万元
- 项目类别:重点项目
相似海外基金
Drug-Induced Destabilization of Bcl-2 mRNA
药物诱导的 Bcl-2 mRNA 不稳定
- 批准号:
7911535 - 财政年份:2009
- 资助金额:
$ 54.78万 - 项目类别:
Development of RIP-Chip methods and tiled arrays to identify functional elements
开发 RIP-Chip 方法和平铺阵列来识别功能元素
- 批准号:
7347325 - 财政年份:2008
- 资助金额:
$ 54.78万 - 项目类别:
Development of RIP-Chip methods and tiled arrays to identify functional elements
开发 RIP-Chip 方法和平铺阵列来识别功能元素
- 批准号:
7618399 - 财政年份:2008
- 资助金额:
$ 54.78万 - 项目类别:
Development of RIP-Chip methods and tiled arrays to identify functional elements
开发 RIP-Chip 方法和平铺阵列来识别功能元素
- 批准号:
7825468 - 财政年份:2008
- 资助金额:
$ 54.78万 - 项目类别:
Drug-Induced Destabilization of Bcl-2 mRNA
药物诱导的 Bcl-2 mRNA 不稳定
- 批准号:
7208037 - 财政年份:2005
- 资助金额:
$ 54.78万 - 项目类别: