Aligning Patient Acuity with Resource Intensity after Major Surgery
大手术后使患者的敏锐度与资源强度保持一致
基本信息
- 批准号:10635798
- 负责人:
- 金额:$ 34.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2027-12-31
- 项目状态:未结题
- 来源:
- 关键词:Admission activityAffectArchitectureArtificial IntelligenceAwarenessCaringClassificationClinicalClinical TrialsCluster randomized trialCodeComputer softwareComputersDataDecision MakingDecision Support SystemsElectronic Health RecordEngineeringEnsureEquityFaceFailureGeneral WardGoalsHealthHomeHospitalizationHospitalsHumanInstitutionIntensive Care UnitsInvestigationLearningMedicalModelingMonitorMorbidity - disease rateOperative Surgical ProceduresOutcomePatient DischargePatient TransferPatientsPerformancePostoperative PeriodProbabilityProspective StudiesProviderRecommendationReproducibilityResearchResourcesRiskRisk AdjustmentSeriesSpecialistStreamSurgeonSystemTestingTimeTriageTrustUncertaintyUnited StatesValidationWorkadverse event riskbiomedical informaticsclinical implementationcostdata sharingdeep learningdeep learning modeldesignexperimental studyfederated learninghospital readmissionimplementation scienceinpatient surgeryinteroperabilitymortalitymultimodalitynovelopen sourcepatient health informationpatient orientedpatient privacypractice settingprospectivesociodemographic groupsuccessusabilityuser-friendlyward
项目摘要
Project Summary
The broad, long-term objective of this application is to generate an efficient, effective decision-support system to
augment postoperative triage, transfer, and discharge decisions that affect more than 15 million patients in the
United States annually. Evidence from single-institution studies suggests that postoperative overtriage of low
acuity patients to intensive care units (ICUs) is associated with low value of care (outcomes/costs) compared
with general ward admission, and that undertriage of high acuity patients to general wards is associated with
increased mortality. These associations require validation externally and prospectively. In addition, further
investigation is needed to determine whether there are similar, identifiable misalignments between patient acuity
and resource intensity occurring throughout postoperative hospital admission and at the time of hospital
discharge. Our central hypothesis is that aligning automated, data-driven patient acuity assessments with
postoperative resource intensity using explainable, fair, uncertainty-aware deep learning models will be
associated with decreased mortality and increased value of care. We will test our central hypothesis by
performing three sets of related but independent experiments. First, we will externally validate an interoperable
version of our postoperative triage classification system, initially using retrospective data at 42 hospitals across
four institutions, then performing similar analyses with retrospective data on a federated learning platform, and
finally using prospective data from 15 hospitals at two institutions. Second, we will generate continuous
postoperative patient acuity assessments with novel DL architectures using multicenter, multimodal (including
clinical notes), retrospective EHR data at three hospitals within a single institution. Third, we will critically evaluate
and optimize model certainty and fairness using retrospective data at 43 hospitals across four institutions,
generate an EHR-embedded decision-support system, and perform prospective decision support usability
testing and optimization at two institutions. The proposed research is intended to produce a validated,
interoperable postoperative triage classification system, foundational evidence for generating continuous
streams of postoperative transfer and discharge recommendations, a postoperative triage decision support
system ready for clinical implementation, and open-source software for optimizing deep learning certainty and
fairness. Achieving these outcomes would increase the probability of success for automated, real-time
postoperative triage decision-support in subsequent clinical trials, and the ultimate goal of augmenting
personalized, patient-centered decision making in surgery.
项目摘要
该应用程序的广泛长期目标是生成一个高效,有效的决策系统
增加影响超过1500万患者的术后分类,转移和出院决策
每年美国。单机构研究的证据表明,术后过度划分低。
敏锐的患者到重症监护病房(ICU)与较低的护理价值(成果/成本)相比有关
随着病房一般的入院,对一般病房的高敏锐患者的训练与
死亡率增加。这些关联需要外部和前瞻性验证。另外,进一步
需要进行调查以确定患者敏锐度之间是否存在相似的,可识别的未对准
术后医院入院和医院时发生的资源强度发生
释放。我们的中心假设是,将自动数据驱动的患者敏锐度评估与
使用可解释,公平,不确定性的深度学习模型的术后资源强度将是
与死亡率下降和护理价值增加有关。我们将通过
执行三组相关但独立的实验。首先,我们将在外部验证可互操作
我们的术后分类分类系统的版本,最初使用42个医院的回顾性数据
四个机构,然后在联合学习平台上使用回顾性数据进行类似的分析,
最终使用来自两个机构的15家医院的潜在数据。其次,我们将产生连续的
使用多中心,多模式的新型DL体系结构进行术后患者敏锐度评估(包括
临床注释),单个机构内三家医院的回顾性EHR数据。第三,我们将进行批判性评估
并使用四家机构的43家医院的回顾性数据优化模型的确定性和公平性,
产生一个EHR包裹的决策支持系统,并执行潜在的决策支持可用性
在两个机构进行测试和优化。拟议的研究旨在产生经过验证的,
互操作术后分类分类系统,产生连续的基本证据
术后转移和出院建议流,术后分类决策支持
准备临床实施的系统和开源软件,以优化深度学习确定性和
公平。实现这些结果将增加自动实时的成功可能性
在随后的临床试验中,术后分类决策支持,也是增强的最终目标
个性化,以患者为中心的手术决策。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tyler J Loftus其他文献
Tyler J Loftus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tyler J Loftus', 18)}}的其他基金
Aligning Patient Acuity with Intensity of Care after Surgery
使患者的敏锐度与术后护理强度保持一致
- 批准号:
10266829 - 财政年份:2020
- 资助金额:
$ 34.88万 - 项目类别:
Aligning Patient Acuity with Intensity of Care after Surgery
使患者的敏锐度与术后护理强度保持一致
- 批准号:
10470304 - 财政年份:2020
- 资助金额:
$ 34.88万 - 项目类别:
Aligning Patient Acuity with Intensity of Care after Surgery
使患者的敏锐度与术后护理强度保持一致
- 批准号:
10685446 - 财政年份:2020
- 资助金额:
$ 34.88万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Three-dimensional Confocal Microscopy Visualization and AFM-IR Chemical Mapping of Lung Surfactant Monolayer Collapse Morphologies
肺表面活性剂单层塌陷形态的三维共焦显微镜可视化和 AFM-IR 化学图谱
- 批准号:
10751972 - 财政年份:2023
- 资助金额:
$ 34.88万 - 项目类别:
The interplay between Tau and ncRNAs – genomic and epigenomic clues to early AD pathogenesis
Tau 和 ncRNA 之间的相互作用 — 早期 AD 发病机制的基因组和表观基因组线索
- 批准号:
10634661 - 财政年份:2022
- 资助金额:
$ 34.88万 - 项目类别:
Building and implementing a TBI prognostic model featuring real-time analysis of brain CT images
构建并实施具有脑部 CT 图像实时分析功能的 TBI 预后模型
- 批准号:
10446746 - 财政年份:2022
- 资助金额:
$ 34.88万 - 项目类别:
SCH: Heterogenous, dynamic synthetic data: From algorithms to clinical applications
SCH:异构动态合成数据:从算法到临床应用
- 批准号:
10559690 - 财政年份:2022
- 资助金额:
$ 34.88万 - 项目类别:
SCH: Heterogenous, dynamic synthetic data: From algorithms to clinical applications
SCH:异构动态合成数据:从算法到临床应用
- 批准号:
10437156 - 财政年份:2022
- 资助金额:
$ 34.88万 - 项目类别: