Leveraging YouTube Video Analytics for Patient Education: A Digital TherapyTool for Clinicians to Retrieve and Recommend Understandable Videos on Chronic Disease Management
利用 YouTube 视频分析进行患者教育:临床医生检索和推荐易于理解的慢性病管理视频的数字治疗工具
基本信息
- 批准号:10631959
- 负责人:
- 金额:$ 31.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAdherenceAdultAssessment toolAutomationCaregiversCaringChronicChronic DiseaseClinic VisitsClinicalClinical TrialsCommunicationComplementComputing MethodologiesDiabetes MellitusDiagnosisDimensionsDiseaseDisease ManagementEducational MaterialsElementsEvaluationFutureGuidelinesHealthHealth Care CostsHealth PromotionHealthcareHomeHospitalsHumanImpact evaluationInformation CentersInterventionInterviewKnowledgeLibrariesLiteratureMachine LearningManaged CareMedicalMental HealthMetadataMethodologyMethodsNatural Language ProcessingNon-Insulin-Dependent Diabetes MellitusOutcomePamphletsPathogenesisPathway interactionsPatient EducationPatientsPerformancePersonal SatisfactionPhysiciansPopulationPreventionPreventivePrintingProtocols documentationRecommendationResearchResourcesRetrievalSelf CareSelf ManagementSiteSocial NetworkSocial SciencesSymptomsSystemTechnologyTimeTrainingTwitteraugmented intelligencecare deliverycomputer sciencedesigndigitaldigital treatmentempowermenthealth communicationhealth literacyimprovedindividual patientinnovationliteratemachine learning frameworkmachine learning methodnovelpatient engagementpatient orientedpoint of carepoor health outcomeprogramsprototypesocial mediasuccesstechnology platformtwo-dimensionalverbal
项目摘要
Project Summary
The easy availability of huge amount of user generated health information on social networks, blogs,
YouTube, Twitter, and hospital review sites presents an unprecedented opportunity to investigate how social
media can be a channel to inform and communicate healthcare information to patients and facilitate patient-
centric health promotion and literacy improvement. YouTube hosts over 100 million healthcare related videos
on a variety of medical conditions. This plethora of user-generated content can be leveraged by patients to
improve adherence to clinical guidelines and self-care required for management of chronic diseases. In this
project, we propose an augmented intelligence-based approach that effectively combines human input from
domain experts and consumers with machine learning and natural language processing methods from computer
science to winnow down and retrieve relevant, contextualized video materials that clinicians can recommend to
patients. The problem of identifying the most relevant videos from a patient perspective is challenging, but
provides an immense innovation space for this approach. We will leverage a co-training machine learning
framework and incorporate inputs from patient education assessment tools and clinicians to assess diabetes-
related videos on two dimensions: the amount of medical information encoded in the videos and video
understandability. We will develop a user-centric patient education video recommender system by integrating
these two dimensions with the YouTube video ranking results. Furthermore, we will apply a multi-dimensional
evaluation strategy that combines computational evaluations, comparisons with YouTube baseline, and causal
analysis methods to understand the performance of the automated methods and the relationship between video
understandability and collective user engagement. Finally, we will integrate our computational approach in a
modular research prototype technology platform that will accept health related YouTube videos as inputs
(generated from patients' keyword searches on diabetes) and produce a ranked list of top 10 retrieved videos for
further review by clinicians, and evaluated for barriers and facilitators of the technology usage. Recommending
relevant educational materials in video format that leverage user-generated content is one way to deliver
personalized and contextualized healthcare information, and resources for self-care management, to patients
and consumers. As technology continues to advance and evolve, our methods can be refined further and
evaluated via clinical trials to improve patient education, empower patients, caregivers and clinicians, and
improve societal health and health literacy.
项目摘要
在社交网络,博客,
YouTube,Twitter和医院审查网站提供了一个前所未有的机会,可以调查如何社交
媒体可以是向患者通知和传达医疗信息并促进患者的渠道 -
以中心的健康促进和扫盲改善。 YouTube主持超过1亿次医疗保健相关的视频
在各种医疗条件下。患者可以利用大量用户生成的内容
提高对慢性疾病管理所需的临床准则和自我保健的依从性。在这个
项目,我们提出了一种基于智力的增强方法,该方法有效地结合了人类的意见
机器学习和自然语言处理方法的域专家和消费者从计算机
科学以获取并检索临床医生可以推荐的相关,上下文化的视频材料
患者。从患者的角度识别最相关视频的问题是具有挑战性的,但是
为这种方法提供了巨大的创新空间。我们将利用共同训练的机器学习
框架并纳入患者教育评估工具和临床医生的投入来评估糖尿病 -
有关两个维度的相关视频:视频和视频中编码的医疗信息量
易懂。我们将通过集成来开发以用户为中心的患者教育视频推荐系统
这两个维度具有YouTube视频排名结果。此外,我们将应用多维
结合计算评估,与YouTube基线的比较和因果关系的评估策略
分析方法了解自动化方法的性能以及视频之间的关系
可理解性和集体用户参与度。最后,我们将将计算方法整合到
模块化研究原型技术平台将接受与健康相关的YouTube视频作为输入
(由患者对糖尿病的关键字搜索产生),并制作出排名前10的视频的排名列表
临床医生进一步审查,并评估了技术使用的障碍和促进者。推荐
以视频格式相关的教育材料,利用用户生成的内容是交付的一种方式
为患者提供个性化和背景化的医疗信息以及自我护理管理的资源
和消费者。随着技术的不断发展和发展,我们的方法可以进一步完善,并且
通过临床试验进行评估,以改善患者教育,增强患者,看护人和临床医生的能力,以及
提高社会健康和健康素养。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
REMA PADMAN其他文献
REMA PADMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('REMA PADMAN', 18)}}的其他基金
Leveraging YouTube Video Analytics for Patient Education: A Digital TherapyTool for Clinicians to Retrieve and Recommend Understandable Videos on Chronic Disease Management
利用 YouTube 视频分析进行患者教育:临床医生检索和推荐易于理解的慢性病管理视频的数字治疗工具
- 批准号:
10454124 - 财政年份:2021
- 资助金额:
$ 31.71万 - 项目类别:
Leveraging YouTube Video Analytics for Patient Education: A Digital TherapyTool for Clinicians to Retrieve and Recommend Understandable Videos on Chronic Disease Management
利用 YouTube 视频分析进行患者教育:临床医生检索和推荐易于理解的慢性病管理视频的数字治疗工具
- 批准号:
10212707 - 财政年份:2021
- 资助金额:
$ 31.71万 - 项目类别:
相似国自然基金
坚持还是转型?反馈驱动的创业者机会信念认知更新及响应决策机理
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
坚持还是转型?反馈驱动的创业者机会信念认知更新及响应决策机理
- 批准号:72272131
- 批准年份:2022
- 资助金额:45.00 万元
- 项目类别:面上项目
不确定性下创业团队能量和抗逆力对创业坚持的权变影响研究
- 批准号:72162025
- 批准年份:2021
- 资助金额:29 万元
- 项目类别:地区科学基金项目
创造性思维中灵活性和坚持性动态交互的神经基础
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
创造性思维中灵活性和坚持性动态交互的神经基础
- 批准号:32100850
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Preventing Firearm Suicide Deaths Among Black/African American Adults
防止黑人/非裔美国成年人因枪支自杀死亡
- 批准号:
10811498 - 财政年份:2023
- 资助金额:
$ 31.71万 - 项目类别:
Screen Smart: Using Digital Health to Improve HIV Screening and Prevention for Adolescents in the Emergency Department
智能屏幕:利用数字健康改善急诊科青少年的艾滋病毒筛查和预防
- 批准号:
10711679 - 财政年份:2023
- 资助金额:
$ 31.71万 - 项目类别:
Integrating Genomic Risk Assessment for Chronic Disease Management in a Diverse Population
整合基因组风险评估以进行不同人群的慢性病管理
- 批准号:
10852376 - 财政年份:2023
- 资助金额:
$ 31.71万 - 项目类别:
Development and feasibility of a mind-body intervention to improve physical activity for patients with chronic hip pain
改善慢性髋部疼痛患者身体活动的身心干预措施的开发和可行性
- 批准号:
10591772 - 财政年份:2023
- 资助金额:
$ 31.71万 - 项目类别: