Machine Learning to identify Biomarkers for Risk of Chronic Graft-Versus-Host Disease
机器学习识别慢性移植物抗宿主病风险的生物标志物
基本信息
- 批准号:10390896
- 负责人:
- 金额:$ 62.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-02 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAlgorithmsAllogenicArchivesB-Cell ActivationBiologicalBiological MarkersBiologyBloodBlood TestsBlood specimenBone Marrow TransplantationCCR5 geneCD276 geneCSF1 geneCXCL10 geneCXCL9 geneCXCR3 geneCellsChildChildhoodClinicalClinical Trials NetworkComplicationCryopreservationCustomCytometryDana-Farber Cancer InstituteDataDendritic CellsDevelopmentDimensionsDiseaseDisease susceptibilityEnzyme-Linked Immunosorbent AssayFOXP3 geneFrequenciesHelper-Inducer T-LymphocyteHematologic NeoplasmsHispanicIL17 geneImmunosuppressionIncidenceInheritedInterleukinsLigandsMCAM geneMachine LearningMalignant - descriptorMeasuresModelingPatientsPeripheral Blood Mononuclear CellPlasmaPlasma ProteinsPopulationPositioning AttributeProteomicsPublishingRANTESRegimenRegulatory T-LymphocyteRelapseResearchRiskSample SizeSamplingSensitivity and SpecificitySteroidsStromelysin 1SymptomsT-LymphocyteTechniquesTestingThinnessTissue BanksTrainingTransplant RecipientsTreesValidationbasebiobankbiomarker panelchemokinechronic graft versus host diseasecohortcurative treatmentsdeep learningdisorder controldisorder riskexperimental studyhematopoietic cell transplantationhigh dimensionalityhigh riskimprovedmachine learning algorithmnovelnovel markerosteopontinpersonalized medicinepredictive markerpredictive testpreemptreceptorrisk stratificationstatisticssuccesstandem mass spectrometry
项目摘要
Major barriers to chronic graft-versus-host disease (cGVHD) research and preemptive treatment are the
inability to predict early following allogeneic hematopoietic cell transplantation (HCT), who will develop cGVHD,
and lack of specific and sensitive risk biomarkers of cGVHD before onset is detectable by clinical symptoms.
This project will use already collected plasma and PBMCs samples from BMTCTN 0201, 1202 and multicenter
pediatric and adults studies (NCT00075816, NCT01879072, and NCT02194439) and the Pasquarello tissue
bank at the Dana–Farber Cancer Institute to analyze proteomic and cellular signatures associated with
impending onset of clinical cGVHD, and overall survival using machine learning (ML) versus established
statistics. Proposed markers are based on previous published and unpublished studies and will include other
novel or hypothesized factors. We will use the tow BMT CTN and NCT02194439 biorepositories with sample
size totaling ~1300 HCT patients (669 cGVHD in comparison to 664 non-cGVHD controls) at day +90 post-
HCT and 14 plasma proteins [Stimulation 2 (ST2; the interleukin (IL)-33 receptor), chemokine (C-X-C motif)
ligand 9 (CXCL9), matrix metalloproteinase 3 (MMP3), osteopontin (OPN), and C-C motif chemokine 15
(CCL15), CD163, CXCL10, IL17, BAFF, B7H3, DKK3, IL1RACP, MCSF, CCL5] as well as 35 markers on 10+
populations totaling up to 300 parameters in a cohort of 200 patients with available PBMCs and paired plasma
at day +90±10 post-HCT with mass cytometry. We will then be in a unique position in the field of cGVHD to
address major questions: (a) Are plasma biomarkers or cellular biomarkers or the combination of both more
amenable to provide better specificity/sensitivity? (b) Can we increase sensitivity and specificity of cGVHD
biomarkers panels by using ML statistics? (c) Can we discover new key biologic drivers of cGVHD using ML
algorithms? As ML techniques are likely to provide better prediction when large amount of data with high-
dimensional covariates and nonlinear relationships are used, we hypothesize that ML analysis will increase
sensitivity and specificity of our panels as well as increase biology granularity. Specific Aim 1 will address if a
day-90 fourteen-plasma biomarker panel on 1300 patients’ samples, using ML, predicts risk of cGVHD with
higher specificity and sensitivity than established statistics. Specific Aim 2 will address if a day-90±10 thirty-
five-cellular biomarker panel, using single-cell mass cytometry and ML, is predictive of development of cGVHD
in a 30 cases vs 30 controls discovery cohort. Specific Aim 3 will address if a comprehensive day-90±10
proteomic biomarker panel only, or cellular biomarker panel only, or a combined proteomic and cellular
biomarker panel in a validation cohort of 200 paired plasma/PBMCs samples, will improve prediction of cGVHD
risk. Upon completion, these studies will result in novel biomarker panels that may facilitate cGVHD risk
stratification for HCT patients and identify candidates for new preemptive approaches.
慢性移植抗宿主病(CGVHD)研究和先发制人治疗的主要障碍是
在同种异体造血细胞移植(HCT)后,无法早日预测,他们将发展CGVHD,
临床符号可以检测到发作前CGVHD的特异性风险生物标志物。
该项目将使用BMTCTN 0201、1202和多中心的已经收集的血浆和PBMCS样品
儿科和成人研究(NCT00075816,NCT01879072和NCT02194439)和Pasquarello组织
Dana -Farber癌症研究所的银行分析与蛋白质组学和细胞特征
即将开始使用机器学习(ML)与已建立的临床CGVHD发作以及总体生存
统计数据。拟议的标记基于以前发表和未发表的研究,将包括其他
新颖或假设的因素。我们将使用带有样品的Tow BMT CTN和NCT02194439生物库
大小约1300例HCT患者(与664个非CGVHD对照相比,669 CGVHD)。
HCT和14个血浆蛋白[刺激2(ST2;白介素(IL)-33受体),趋化因子(C-X-C基序)
配体9(CXCL9),基质金属蛋白酶3(MMP3),骨桥蛋白(OPN)和C-C基序趋化因子15
(CCL15),CD163,CXCL10,IL17,BAFF,B7H3,DKK3,IL1RACP,MCSF,CCL5]以及10+上的35个标记
在200名可用PBMC和配对等离子体的患者的队列中,总计多达300个参数的人群
在第 +90±10天后进行质量细胞仪。然后,我们将在CGVHD领域处于独特的位置
解决主要问题:(a)是血浆生物标志物或细胞生物标志物或两者的组合
可以提供更好的特异性/敏感性? (b)我们可以提高CGVHD的灵敏度和特异性
使用ML统计数据的生物标志物面板? (c)我们可以使用ML发现CGVHD的新关键生物驱动器
算法?由于ML技术可能会提供更好的预测,当
使用尺寸协变量和非线性关系,我们假设ML分析将增加
面板的敏感性和特异性以及增加生物学粒度。具体目标1如果一个
第90天使用ML的14个患者样本上的14种系以上的生物标志物面板可预测使用CGVHD的风险
比确定的统计数据更高的特异性和灵敏度。特定的目标2如果一天-90±10三十 -
使用单细胞质量细胞术和ML的五细胞生物标志物面板可预测CGVHD的发展
在30个案例中,30个控制发现队列。特定的目标3将解决如果全面的90±10
仅蛋白质组学生物标志物面板或仅细胞生物标志物面板或组合蛋白质组学和细胞
在200个配对等离子体/PBMCS样品的验证队列中的生物标志物面板将改善CGVHD的预测
风险。完成后,这些研究将导致新型的生物标志物面板,以促进CGVHD风险
HCT患者的分层并确定新的先发制人方法的候选人。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brent R Logan其他文献
Brent R Logan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brent R Logan', 18)}}的其他基金
Machine Learning to identify Biomarkers for Risk of Chronic Graft-Versus-Host Disease
机器学习识别慢性移植物抗宿主病风险的生物标志物
- 批准号:
10533823 - 财政年份:2021
- 资助金额:
$ 62.82万 - 项目类别:
相似国自然基金
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合多源异构数据应用深度学习预测成人肺部感染病原体研究
- 批准号:82302311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Sleep and Cardiometabolic Subgroup Discovery and Risk Prediction in United States Adolescents and Young Adults: A Multi-Study Multi-Domain Analysis of NHANES and NSRR
美国青少年和年轻人的睡眠和心脏代谢亚组发现和风险预测:NHANES 和 NSRR 的多研究多领域分析
- 批准号:
10639360 - 财政年份:2023
- 资助金额:
$ 62.82万 - 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 62.82万 - 项目类别:
Move and Snooze: Adding insomnia treatment to an exercise program to improve pain outcomes in older adults with knee osteoarthritis
活动和小睡:在锻炼计划中添加失眠治疗,以改善患有膝骨关节炎的老年人的疼痛结果
- 批准号:
10797056 - 财政年份:2023
- 资助金额:
$ 62.82万 - 项目类别:
Mixed methods examination of warning signs within 24 hours of suicide attempt in hospitalized adults
住院成人自杀未遂 24 小时内警告信号的混合方法检查
- 批准号:
10710712 - 财政年份:2023
- 资助金额:
$ 62.82万 - 项目类别: