Ion channel regulation by heterogeneous membranes
异质膜的离子通道调节
基本信息
- 批准号:10473794
- 负责人:
- 金额:$ 26.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-13 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:BehaviorBindingBinding ProteinsBinding SitesBiochemicalBiochemical ProcessBiophysical ProcessBrainCell membraneCellular MembraneChargeChemicalsCholesterolCommunitiesComplexCouplingDataDefectDevelopmentDiseaseElectrophysiology (science)EnvironmentEnzymesFluorescenceGoalsHealthHumanHydrophobicityImageIon ChannelIonsKnowledgeLigandsLipidsLiquid substanceMeasurementMeasuresMediatingMembraneMental disordersMicroscopyMissionModelingMolecular ConformationMutationNatureNerve DegenerationNeuronsNeurosciencesPathologicPathway interactionsPharmaceutical PreparationsPhosphatidylinositolsPhysical environmentPlayPost-Translational Protein ProcessingProcessPropertyProteinsRegulationRegulatory PathwayResearchResolutionRestRoleSiteSorting - Cell MovementStructureSynapsesSynaptic plasticityTechniquesTestingTheoretical modelThermodynamicsTyrosine PhosphorylationUnited States National Institutes of HealthWorkaddictioneffective therapyexperienceexperimental studygenetic regulatory proteininnovationinsightmembrane modelmolecular scalenervous system disorderneurosteroidsnovelnovel strategiesnovel therapeutic interventionpalmitoylationpredictive modelingpreventrelating to nervous systemsimulationsmall moleculestemsynaptic functiontheoriestreatment strategyvoltage
项目摘要
Ion channels are membrane bound proteins that mediate fast neural dynamics by selectively controlling the
flow of charged ions across membranes. Most channels are embedded within compositionally complex
neuronal membranes, whose detailed composition play important roles in regulating channel functions.
Membranes can regulate channels directly, through the binding of specific components to sites within channel
structures, or indirectly, by impacting the biophysical and biochemical processes evolved to regulate channel
functions in their native environment. A mechanistic understanding of how membrane composition impacts
channel functions is vital because changes in neuronal membrane composition are associated with normal
development and neurological disease. The goal of the proposed studies is to test three distinct mechanisms
through which compositionally complex membranes regulate channel function. The working hypothesis,
supported by past collaborative work of the Pl and Col, is that some channel functions are regulated by
emergent properties of their embedding membranes that occur because these membranes are heterogeneous.
Guided by extensive preliminary data, three specific aims will be pursued: 1) Measure the functional coupling
of channel states to membrane domains, 2) Establish how membrane domains impact the binding of allosteric
regulators, and 3) Identify the roles of membrane domains within the broader regulatory environment of
neurons. The first aim experimentally tests a minimal model positing that single channel functions are
allosterically regulated by domains within embedding membranes through tuning the availability of preferred
local lipid environments. The second aim explores how the chemical potential of known allosteric regulators
such as cholesterol and phosphoinositide lipids are impacted by the same thermodynamic parameters that
control properties of membrane domains. The third aim investigates how membrane domains impact the
sorting of enzymes that participate in protein palmitoylation and tyrosine phosphorylation regulatory pathways
occurring at neuronal synapses. Experimental approaches draw on the PIs expertise using quantitative super-resolution
fluorescence localization microscopy techniques and are combined with functional studies, theory,
and simulation to test and refine mechanistic models of isolated and collective channel functions. The
proposed work is innovative because it applies predictive models of membrane organization that are novel to
both the channel and membrane domain communities. A broadly applicable framework for describing how
domains modulate channel functions will drive advances in neuroscience by providing new insights into the
functional basis for membrane changes with development and neurological disease, will motivate more
effective and targeted treatments for neurological disease, and will connect the molecular-scale behaviors of
channels to larger questions in neuroscience through the collective actions of lipids and membrane domains.
离子通道是膜结合的蛋白,通过选择性控制
带电离子跨膜的流动。大多数通道都嵌入在构图中
神经元膜的详细组成在调节通道功能中起着重要作用。
膜可以通过特定组件与通道内的位点的结合直接调节通道
结构或间接影响生物物理和生化过程以调节通道
在其本地环境中起作用。对膜成分如何影响的机械理解
通道功能至关重要,因为神经元膜组成的变化与正常
发育和神经疾病。拟议研究的目的是测试三种不同的机制
组成复杂的膜调节通道功能。工作假设,
PL和COL的过去协作工作的支持是,某些渠道功能由
由于这些膜是异质的,其嵌入膜的新兴特性。
在广泛的初步数据的指导下,将追求三个具体目标:1)测量功能耦合
通道状态到膜结构域,2)确定膜结构域如何影响变构的结合
监管机构,以及3)确定膜域在更广泛的监管环境中的作用
神经元。第一个目标在实验中测试了最小模型,认为单个通道功能是
通过调整首选的可用性,由嵌入膜内的域进行变构调节
局部脂质环境。第二个目的探讨了已知的变构调节剂的化学潜力如何
例如胆固醇和磷酸肌醇脂质受到相同热力学参数的影响
膜域的控制特性。第三目调查了膜域如何影响
参与蛋白质棕榈酰化和酪氨酸磷酸化调节途径的酶的排序
发生在神经元突触。实验方法使用定量超分辨率利用PIS专业知识
荧光定位显微镜技术,并与功能研究结合,理论,
以及测试和完善孤立和集体通道功能的机械模型的模拟。这
拟议的工作具有创新性,因为它应用了新颖的膜组织的预测模型
渠道和膜域社区。一个广泛适用的框架,用于描述如何
域调节渠道功能将通过向该神经科学的发展推动神经科学的进步
膜变化随发育和神经疾病的变化的功能基础,将激励更多
有效和有针对性的神经疾病治疗,并将连接
通过脂质和膜域的集体作用,神经科学中更大问题的渠道。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah L Veatch其他文献
Sarah L Veatch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah L Veatch', 18)}}的其他基金
Ion channel regulation by heterogeneous membranes
异质膜的离子通道调节
- 批准号:
10256046 - 财政年份:2019
- 资助金额:
$ 26.08万 - 项目类别:
Ion channel regulation by heterogeneous membranes
异质膜的离子通道调节
- 批准号:
10016343 - 财政年份:2019
- 资助金额:
$ 26.08万 - 项目类别:
Functional roles of lipid domains in B cell signaling
脂质结构域在 B 细胞信号传导中的功能作用
- 批准号:
10183265 - 财政年份:2014
- 资助金额:
$ 26.08万 - 项目类别:
Functional roles of lipid domains in B cell signaling
脂质结构域在 B 细胞信号传导中的功能作用
- 批准号:
9921409 - 财政年份:2014
- 资助金额:
$ 26.08万 - 项目类别:
Functional roles of lipids in early B cell receptor signaling SUPPLEMENT
脂质在早期 B 细胞受体信号传导中的功能作用
- 批准号:
9276225 - 财政年份:2014
- 资助金额:
$ 26.08万 - 项目类别:
Functional roles of lipids in early B cell receptor signaling.
脂质在早期 B 细胞受体信号传导中的功能作用。
- 批准号:
8668648 - 财政年份:2014
- 资助金额:
$ 26.08万 - 项目类别:
Functional roles of lipids in early B cell receptor signaling.
脂质在早期 B 细胞受体信号传导中的功能作用。
- 批准号:
9058146 - 财政年份:2014
- 资助金额:
$ 26.08万 - 项目类别:
Functional roles of lipid domains in B cell signaling
脂质结构域在 B 细胞信号传导中的功能作用
- 批准号:
10393588 - 财政年份:2014
- 资助金额:
$ 26.08万 - 项目类别:
Mechanistic studies of membrane lateral organization in cell plasma membranes.
细胞质膜膜横向组织的机制研究。
- 批准号:
8146018 - 财政年份:2009
- 资助金额:
$ 26.08万 - 项目类别:
Mechanistic studies of membrane lateral organization in cell plasma membranes.
细胞质膜膜横向组织的机制研究。
- 批准号:
8133576 - 财政年份:2009
- 资助金额:
$ 26.08万 - 项目类别:
相似国自然基金
GPR27活化ECL3结合兴奋性突触后核心蛋白SHANKS调控内嗅皮层-海马长时程增强在慢性癫痫共患抑郁样行为大鼠中的作用及机制
- 批准号:82371451
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
CIB1调控树突棘消长泛素化/磷酸化双通路在低剂量重金属联合暴露致神经行为异常的分子机制
- 批准号:81903360
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
RNA结合蛋白IGF2BP1介导脊索瘤恶性生物学行为的作用及机制研究
- 批准号:81902731
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
分子拥挤环境下蛋白质五级作用对其结构及结合行为的影响机理研究
- 批准号:21977013
- 批准年份:2019
- 资助金额:64 万元
- 项目类别:面上项目
梨小食心虫新型引诱剂的靶向筛选及行为学检测
- 批准号:31801797
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Maternal immune activation remodeling of offspring glycosaminoglycan sulfation patterns during neurodevelopment
神经发育过程中后代糖胺聚糖硫酸化模式的母体免疫激活重塑
- 批准号:
10508305 - 财政年份:2023
- 资助金额:
$ 26.08万 - 项目类别:
Exploring how cells generate and release distinct subpopulations of dense-core vesicles
探索细胞如何产生和释放不同的致密核心囊泡亚群
- 批准号:
10679873 - 财政年份:2023
- 资助金额:
$ 26.08万 - 项目类别:
Regulation of paraspeckles by STAU1 in neurodegenerative disease
STAU1 在神经退行性疾病中对 paraspeckles 的调节
- 批准号:
10668027 - 财政年份:2023
- 资助金额:
$ 26.08万 - 项目类别:
Immunomodulatory and behavioral effects of CAR T regulatory cell therapy for Alzheimer's Disease”.
CAR T 调节细胞疗法对阿尔茨海默病的免疫调节和行为影响。
- 批准号:
10633721 - 财政年份:2023
- 资助金额:
$ 26.08万 - 项目类别:
GMP Manufacturing and IND Enabling Studies of Extended-Release PNA5: A Novel Therapeutic for Treating Cognitive Impairment in Patients at-risk for Alzheimer's Disease-Related Dementias and Vascular
缓释 PNA5 的 GMP 生产和 IND 启用研究:一种治疗阿尔茨海默氏病相关痴呆和血管性认知障碍患者认知障碍的新疗法
- 批准号:
10819329 - 财政年份:2023
- 资助金额:
$ 26.08万 - 项目类别: